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O Minerals mining goes on expanding globally.

Between 1971 and 2019 world total energy supply (TES) increased 2.6 times (from 230 EJ to 606 EJ) and

its structure changed markedly.
Investment in clean energy has risen by 40% since 2020. The emergence of a new clean energy economy,

led by solar PV and electric vehicles (EVs), provides hope for the way forward. From 2017 to 2022, demand
for lithium tripled while nickel and cobalt demand increased by 40 and 70% respectively.

A global-scale dataset covering 101,583 km? of large-scale as well as artisanal and small-scale
mining.

Total energy supply (TES) by source, World, 1990-2021
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O Mining has seriously damaged the environment.

 Globally metal mines affect 479,200 km of river
channels and 164,000 km? of floodplains.

Macklin et al.(2023,Science)

Metal mining potentially influences 50 million km?2
of Earth’s land surface, with 8% coinciding with
Protected Areas, 7% with Key Biodiversity
Areas, and 16% with Remaining Wilderness.

Mining activities impact biodiversity.
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O Forest plays a critical role in the earth system and the global carbon cycle.

« Global forests were a net carbon sink of -7.6 = 49 GtCO, e yr.
« Atotal of 42.8% of the planet’s trees exist in tropical and subtropical regions.
» Globally, 2.3 million square kilometers of forest were lost during from 2000-2012.

a Terrestrial biome (number of ground- Total trees
sourced density estimates) (billions) = 95% CI
Boreal forests (n = 8,688) 749.3 (+ 50.1)
Deserts (n = 14,637) 53.0(x2.9)
Flooded grasslands (n = 271) 64.6 (£ 14.2)
Mangroves (n = 21) 8.2(+0.3)
Mediterranean forests (n = 16,727) 534 (21.2)
Montane grasslands 60.3 (x 24.0)
Temperate b = 362.6(+29)
Temperate conifer (n = 85,144) 1506 (x 1.3)
Temperate grasslands (n = 17,051) 148.3 (£ 4.9)
Tropical coniferous (n = 0) 22.2(20.4)
Tropical dry (n = 115) 156.4 (= 63.4)
Tropical grasslands (n = 999) 318.0 (= 35.5)
H ansen et al . (20 13) Tropical moist (n = 5,321) 799.4 (= 24.0)
Tundra (n = 2,268) 949 (= 6.3)
n =429,775 3,041.2 (£ 96.1)
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O Mining causes increasing damage to forests

The surge in mining activity has led to more extensive deforestation, directly and indirectly.

« 3,264 km? forest were directly lost in the pantropical region in 2000-2019.

2 Brazil
Indonesia (327 km?)
(1,901 km?)
2005-2009
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Giljum et al.(2022)
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B, Rapidly changing world

. . ok = Monitering and reclajmation rate inspection
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B Research background

O Remote sensing data and cloud computing provided support.

« Long time series, high-resolution remote sensing data, and sophisticated change monitoring algorithms
enable deforestation detection with greater precision.
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0 Research gap

* Previous studies focused on assessing mining disturbances at individual mines in the Amazon.

e
et

Csillik et al.(2020) Asner et al.(2013)

® Quantify Long-Term Impacts of Mining on Regional Deforestation---Amazon
rainforest
® Integrate Tree Height for More Accurate Carbon Loss Assessment
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O Study area The Amazon forest spans around 7 M km?2 and

° Study area: Amazon basin covers over 9 countries.
* Time scale: 1990-2020 Amazonian forest lost 4.5 X 105 km?2 in 2000-2020,
« Composite mining area datasets: impacted by the climate and human activity.

« Maus et al. (2023) ; Liang et al. (2021)
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. Methods

O Study area

« Study area: Amazon basin
 Time scale: 1990-2020

« Composite mining area datasets:
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O Technical method

Mapping dynamic forest disturbance caused by mining  : i Quantify carbon loss and
gain caused by mining
: Landsat 5/7/8 / Composite
Time series » NDVI trajectory mining area
(1990-2020) / J, datasets
: / Forest AGB /
{CCDC algorithmsH Buffer 5 km ] density map
' Yearly maps of
eIy W deforestation and recovery f Space-for-time A IS
assessment | 3 E i 1 rate
caused by mining

Temporal and spatial analysis of forest disturbance | Carbon Potential carbon Carbon
P stocks removals removals

Forest age Prima Gquraphic . } | ‘
datase%l forest dagset [ centroid analysis :
: Yearly mining-induced
Forest height Protected Statistical } carbon changes map
dataset Areas dataset analysis P
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O Continuous Change Detection and Classification (CCDC)

« CCDC is a generalized algorithm for monitoring different types of land change. Therefore, it does not rely on
a single spectral band or index, nor does it filter changes based on the specific spectral directional changes.

« Change detection is performed using all available Landsat imagery and a user-defined set of spectral
bands or indices. Typically, at least the Green, Red, NIR, SWIR1, and SWIR2 bands are used for change

detection.
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O 1. Mapping dynamic forest disturbance caused by mining

Capture the temporal features of mining-induced

« Dataset: Landsat images between _
deforestation and forest recovery:

January 1, 1989, and December 31,
2021
 Methods: CCDC algorithm
 Indicator: NDVI




B Methods () M52 F

ZHEJIANG UNIVERSITY

O 2. Temporal and spatial analysis of forest disturbance

» Time-series analysis of deforestation > Geographic centroid of the deforestation trajectory

and forest recovery We calculated the centroid coordinates of deforestation

* The linear regression model was used to over time using time intervals of 1 year and 5 years,
analyze the trend and rate of mining- which are as follows:
induced forest change in every period
Dataset: - & ( ) &
XY =ZP-, XXin | Yy, ZP-,
« The primary humid tropical forests; e o (&) CORCD) — (t)
« World Database on Protected Areas
(WDPA) where, X; and Y; represent the longitude and latitude coordinates of the
« 1-km global forest age dataset geographic centroid at time t; P(; y represents pixel area of deforestation

* 30-m global forest height data due to mining during period t; X; »y represent deforestation's longitude and

latitude coordinates due to mining at time t.
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O 3. Quantify carbon loss and gain caused by mining

> Carbon loss by mining « Carbon loss directly due to mining
Dataset: Global AGB density map (2000); AGB density map combined with the yearly mining-
_ induced forest disturbance map.
Methods:
BGB = 0.489AGB°®°

« Potential carbon loss due to mining
Carbongs,q = 0.5AGB + 0.5BGB

Aboveground biomass change (AAGB)

Missing value is substituted by the values of forests within Ecozone Forest type
Mean AAGB SD Cl (95%)
3 km. YS 5.9 25 5.1,6.7
Tropieal 0s 23 11 20,2.6
0G 1.0 2.0 0.6,1.4
Aboveground Live Woody Biomass Density YS 59 23 4.2,6.2
| et TrOpfig;':t(Ia STOiSt os ”7 17 1935
0G 0.4 2.1 -0.7,1.5

Younger secondary forests (YS), older secondary forests (OS) ,old-growth forests (OG).
Estimating aboveground net biomass change for tropical and subtropical forests:

Powered by Esri

Refinement of IPCC default rates using forest plot data-Global change biology, 2019
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O Quantify carbon loss and gain caused by mining
> GEDI dataset

« The Global Ecosystem Dynamics Investigation (GEDI) produces high resolution laser ranging
observations of the 3D structure of the Earth, launched on SpaceX-16 on December 5th, 2018.

« GEDI will address its mission science questions by making lidar waveform (i.e., vertical profile)
observations between 51.6° N and S latitudes.
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O Quantify carbon loss and gain caused by mining
> Global forest height dataset by GEDI

- Each GEDI laser shot will result in a waveform that contains information about the vegetation

canopy and the topography underneath, which can be used to quantify canopy vertical
structure, canopy height, and ground elevation.

ATBD #

L1A-2A

L1B

L2B

L3

L4A

L4EB

Data products

1A- Raw waveforms, 2A
Ground elevation, canopy
top height, relative height
(RH) metrics

Geolocated waveforms

Canopy Cover Fraction
(CCF), CCF profile, Leaf
Area Index (LAl), LAl profile

Gridded Level 2 metrics

Footprint level above ground
biomass

Gridded Above Ground
Biomass Density (AGBD)
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O Quantify carbon loss and gain caused by mining

A Time-for-time approach

» Space-for-time

Observations of climate and
biotic variables over time

E»E-}E Observations of climate and
biotic variables over space

® SFTS uses spatial climate—biotic relationships to predict biotic

responses to climate change over time, under the assumption of

Time! Time2 Timel

space—time equivalence. This approach can generate l . | l -
Observed temporal cimate-biotic flamnshnp Observed spatiol climate-biotic re::uonshnp
predictions rapidly, often from existing data or relatively small U 7 Yl i
. . Biotic P § vaB::;“c # OS5 - E
data sets that can be collected during shorter projects and/or ey '“7/ f ™ o=
' : | ¥ E
funding Cycles_ Climate variable :.f:’:f’.ﬁl:fl'-.. Climate variable J?’:’.‘:f‘:’.;:‘:::.
. . . . . ! Extrapolation® ! Transiation to time**
® Space-for-time substitution (SFT) is a method for studying slow v v

Space-for-time
projection of biotic
state under future

climate change

ecological processes, where the relationships between 1 —

projection of biotic
state under future

ecological variables are studied at sites that are assumed to be cimate change

SE5pacefor Tme predictions Swas nvoive tranilaton of spatial

at different stages of development. S —" —
Climate variable [; Biotic variable ¥ ** *

Lovell et al.,2023
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O Quantify carbon loss and gain caused by mining

» Carbon stock gains by recovery

Dataset: Global AGB density map (2000);
Global forest height dataset (2000, 2020)

Methods:

« Predict AGB distributions in 2020
We assumed that forest biomass was the same
at a given height based on the correlation

between forest carbon stock and forest height.

« Fit an exponential model for AGB growth

estimation in forest recovery
Our second hypothesis is that the time series of AGB

recovery will all follow a similar trajectory during forest

recovery.

1.5

Y
o

AGB recovery/%
L

o
o

y=0.81 (1- e00%)
R? = 0.556; RMSE = 0.037

0.0

0 25 50 75 100



7™

PART THREE +— Results

W b




B Results ‘) S f

FHEJIANG UNIVERSITY
O Accelerating deforestation by mining

« Mining-induced deforestation reached 2427.61 km? in the last 30

Forest loss area

years. (kmz)
French Guiana 24.98

i Bolivia 26.77

B Peru 709.01

Suriname 267.44

Guyana 304.75

Commisn Brazil 945.75
d ! Ecuador 13.39
Columbia 0.04

Venezuela 135.47

2020
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O Accelerating deforestation by mining a

Ynezuela

« 2010-2020, deforestation reached 1596.60 km?, 6.3 times higher
than the deforestation recorded in the first 10 years.

* The average annual deforestation increased from 23.02 km? yr-1
in the first decade to 159.66 km? yr! in the last decade, with a Forest loss during &
growth rate of 6.48 £ 1.02 km?yr2. o roe02000 A

E92010-2020

CJAmazon basin
s Miles
0 200 400 800 1,200

b . .
_ 1990-2000 | 20002010 | 2010-2020 | 1990-2020 > =

6.38 92 68

N
n
o

Defore(slzfrf'z;m B 25307 577.73 1596.60 2427.61 20 [ /AW | wn ke ee ST

Annual

Forest loss(km?)
o
o

deforestation area 23.02 57.77 159.66 78.31 100 g
50 4
Deforestation o A
S ETEMOGNETEEN -0.29+1.44 6.55+1.56" 12.5442.33" 6.48+1.01 3338388558558 82885888 00 22 2]
(km2 yr‘2) Bolivia Brazil Colombia u Ecuador u French Guiana
Guyana Peru Suriname Venezuela
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O High conservation value forests are under threat

. b 1000 @ 100%
« In protected areas: 533.8 km? equivalent to 000 ° | oo
21.99%.. 800 . . 80%
L 700 ° R ® | 70%
* In primary forest: 1475.7 km?, approximately . °° 60%
60.79% of the deforestation. 7 jzz q - jg"’:
& 300 30%
« 126.43 km? of deforestation occurred in protected 200 | ® . 20%
areas, accounting for 94% in Venezuela. 100 [ ° 10%
0 0%
. . . iy <2 ‘é\‘ & @ @ & & & o
« Several countries experienced deforestation within & Qg@“ o @a@" & < <€ A@Qav"‘
primary forests exceeding 70%, such as Suriname, = In primary forest = In protected area = Total loss

Venezuela, G uyana, and French Gu |an a. ®The ratio in primary forest ~ @The ratio in protected area
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O High conservation value forests are under threat

e Deforestation trends shifted to inland forests in 2000-2005, as ¢

indicated by a 2.75° northward movement of the geographic
centroid.

N
LA

« Forest height: 17.17 £ 0.59m = 24.14 £ 0.97m

Forest height /m
N
o

—_
&

« Forest age: 244.25 * 11.34 yr > 285.33 £ 4.77 yr

Loss ratio /%

1990 2000 2010 2020
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; 100.
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O Rarely forest regrow after mining

« Only 5.1% of the mining-induced deforested area, or 123.90km?, was covered by forest recovery.

 Peru has the most forest recovery, covering an area of 52.03 km?, just 7.3% of the deforestation area.

a . N 350 V;g?/:/o
1990-2000  2000-2010  2010-2020  1990-2020 - o
Forest regrowth fre s §
gre 26.60 45.85 51.45 123.90
area (km?) 50 o
Annual forest —_—— P eetdaton
regrowth area 2.41 4.59 5.15 4.00 b " [ o
(km?yr-) i [ 1o
Forest regrowth ) 5 o &
change rate .05+0. .32+0. . 0.11+0.07" g, [ o
§2] b 0.05+0.19 0.32+0.20 0.64+0.39 0.11+0.07 5 2 o
(km?2yr-2) £
Recovery;(%) 10.8 8.3 3.7 7.7 E
Recovery 0.003x0.00 -0.004+ -0.007x -0.003% 222 069

rate (y r_l) 8 0.003™ 0.003™ 0.001™ 2000 5.76 52.03 836 439
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O Carbon losses due to mining

« The total carbon losses due to mining: 33.72 Tg

w
3

8%

w

« Deforestation: 30.51 Tg C. (with an average annual forest -

carbon loss 1.02 Tg C yr-1 and increased significantly at a
rate of 0.089 Tg C yr! during 30 years)

o
)

- 6%

\S]

- 5%

Carbon change(Tg)
o

| 4% §
« Potential forest carbon sequestration: 4.48TgC, 1 1 -,
constituting 12.8% of the total carbon loss s Il .
ollllllllllllllll _________ SEEERE 19

* Forest recovery after mining: 1.26TgC, Only 4.13% of the
carbon sequestration lost due to deforestation is
recovered through forest recovery. 222222222 SRKKK

mmm Carbon loss by deforestation mmm Potential carbon loss

o
o

0%

T T T T T T T T T

COO0COO0O0O0O00000
NN

mmm Carbon gain by regrowth —o—Ratio



N A

SART FOUR o Discussion

\ " 2 3



hia. Cretlit; Daniel Mu




AR

ZHEJIANG UNIVERSITY

O Mining placed more stress on forests in Amazon.

« Annual disturbances from mining have grown 10.6-fold over the past three decades.

« The deforestation acceleration rate by mining (2.94 km?2 yr-2) is significantly higher than the overall
deforestation (0.20 km? yr-2) by normalizing the loss magnitude.

50000 250
45000
40000 200
35000 y = 10.029x + 3.4157
R?= 0.9639
30000 150
25000 PR S B
:u‘?:i::::zs(zom Highlight) 20000 /o oeeemmmTTTT _ -7 100
. 15000
" y = 366.45x + 18784
10000 Rz =0.0795 50
5000
. . . .
S 335855895303 9858958
Hansen et al. (2021) SSS858S8SSE8EE8E88888¢8¢8¢%

—#— Mining drives —8— Total forest loss
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O Clean energy intensifies metal energy mining.

 Renewable energy production will exacerbate mining threats to biodiversity, which could affect 50
million square km of Earth's land surface, of which 8% is consistent with protected areas, 7% with
critical biodiversity areas and 16% with remaining wilderness.

) n | QUALITY GENDER

fa:; POVERTY d g EDUCATION EQUALITY
SUSTAINABLE [ . : i 0.3
DEVELOPMENT Miiw : ! |!!| l . Protected Areas
£
GOALS = 0.05 I Key Biodiversity Areas
CLEAN WATER DECENT WORK AND REDUCED 1" STAINABLE CITIES ' e i
3 AND SANITATION ECONOMIC GROWTH 1 INEQUALITIES 1 Ao commuNTES Remaining Wildemess
o
-— S 0.2
>
o
c
CLIMATE PARTNERSHIPS 0.15
13 ACTION 17 FOR THE GOALS -.g
o
a
@ S 0.1
o
0.05
0

Mining Non-mining
Sonter et al.(2020)
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O Post-mining forest restoration needs urgent attention.

Woody biomass recovery rates on abandoned mining pits and tailing ponds are among the lowest ever
recorded for tropical forests, with close to no woody biomass recovery after 3—4 years. (Kalamandeen et

al., 2020)
. Mahdia . Puruni
Census I: 2016 | Census II: 2017
8
0.100 0.100
6 ~ 0.075 —~ 0075
B P
> =)
= 0.050 = 0050
o o
g 0.025 0.025
(lif) Mining pit 24 0.000 0.000
8 Mining pit Tailing pond Mining pit Tailing pond
<
(ii) Tailing pond
. . 2
A .
-~ 7
S
0 = - b

Overbljrden Minin'g pit Tailing'pond Overb'urden Minir:ng pit Tailingi pond

« Soil and water pollution issues .
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O More forest management activities should be undertaken to protect forests.

The Bonn Challenge is a global goal to bring 150 million hectares of degraded and deforested

landscapes into restoration by 2020 and 350 million hectares by 2030. (only achieve 1.8%)

REDD +: Reducing emissions from deforestation and forest degradation in developing countries.

The Bonn Challenge

The Bonn Challenge is a global goal to bring 150 million hectares of degraded and
deforested landscapes into restoration by 2020 and 350 million hectares by 2030.

REDD+ stands for Reducing Emissions from Deforestation It is an international framework developed by the
and forest Degradation, and the role of conservation,
sustainable management of forests and enhancement
of forest carbon stocks in developing countries.

United Nations Framework Convention on Climate Change
(UNFCCC) in 2005. It aims to stop global warming
through the enhancement and conservation of forests

in developing countries.

[ &
REDD+ Activities '

Conservation

co2 02

o

I?ecilucmg Reducing Sustainable Enhancement
emissions from i<sions of forest carbon
emissions from management

deforestation of forest carbon

stocks

BillionTrees

forest degradation

stocks of forests
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