

MASBio

United States Department of Agriculture

Biochar As Soil Amendment

ASRS 41st Annual Meeting

June 4, 2024, Knoxville TN

What is Biochar: The Oldest New Material

Highly stable carbon-rich solid material produced by thermal decomposition of biomass in oxygen-limited environment (pyrolysis)

Citation

Why Now? Why Soil? Why Biochar?

1876 – Virgin Grassland Soil (Morrow Plots, University of Illinois)

Role of Soil Organic Matter

Physical

- Improve soil structural stability
- Increase water-stable aggregates
- Reduce bulk density
- Influence water retention
- Mulching reduces water/soil loss
- Buffering soil temperature

Biological

- Energy for biological process
- Release nutrients (N, P, S,K etc.)
- Increase biodiversity
- Improve soil Resilience

Chemical

SOM

- Increase CEC
- Buffering soil pH
- Chelates
- Immobilizes pollutants

The Carbon Cycle

Biomass

Pyrolysis

Biochar

CO₂ Emission from Biochar Amended Soil – Feedstock and Application Rate Effect

Weeks of incubation

The Carbon Cycle

Why Biochar?

Terra Preta soils

WEST VIRGINIA STATE

UNIVERSITY

The ancient soil that could help agriculture and the climate today

Biochar.co.uk

Influence of Biochar on Soil

336-CPS-1

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

SOIL CARBON AMENDMENT

CODE 336

(ac)

DEFINITION

Application of carbon-based amendments derived from plant materials or treated animal byproducts.

PURPOSE

Use this practice to accomplish one or more of the following purposes:

- Improve or maintain soil organic matter.
- Sequester carbon and enhance soil carbon (C) stocks.
- Improve soil aggregate stability.
- Improve habitat for soil organisms.

WES:

Biochar/Charcoal Production

UNIVERSITY

Biochar Production Using 'The Ring-of-Fire'

1891

Biochar/Charcoal Production

1891

Transformation During Pyrolysis

(Condensed) Aromatic Structure

STATE UNIVER

1891

Peak Temperature Effect on Biochar Properties

Table 7.6 Average biochar pH, calcium carbonate equivalent (CCE), surface area and cation exchange capacity (CEC) based on pyrolysis temperature, pyrolysis type and pyrolysis temperature by type

pН	CCE	Surface Area	CEC	
-44 4 / 16 164 10	(%)	$(m^2 g^1)$	(mmol_kg')	
5.01	7.95	1.686	327	
7.60	13.7	65.36	371	
8.10	17.2	83.98	191	
8.71	15.6	111.8	283	
9.00	ents intvaler	217.0	126	
9.83	21.0	176.2	39.0	
10.8	starbin d Stars	213.8	44.0	
			to retain nutifies	
0.20		juantity of Ame		
0.30	ea and poros-	69.38	28.8	
8.50	14.9	124.4	250 Biochar for environmental management, Routledge, 2	
	рН 5.01 7.60 8.10 8.71 9.00 9.83 10.8 8.38 8.38 8.50	pH CCE (%) 5.01 7.95 7.60 13.7 8.10 17.2 8.71 15.6 9.00 ‡ 9.83 21.0 10.8 8.38 8.50 14.9	pH CCE (%)Surface Area $(m^2 g^1)$ 5.017.951.6867.6013.765.368.1017.283.988.7115.6111.89.00‡217.09.8321.0176.210.8213.88.3869.388.5014.9124.4	

Pyrolysis - Conversion Efficiency of C, N, P

Biochar for environmental management, Routledge, 2015

Biochar Properties

WEST VIRGINIA

Porous, Stable Carbon-Rich Material of High Surface Area

Heterogeneous composition of functional groups

Well, it depends...

Kimetu et al., 2008. Ecosystems DOI: 10.1007/s10021-008-9154-z

1891

STATE

Application Rate

WEST VIRGINIA STATE

S. Jeffery et al. / Agriculture, Ecosystems and Environment 144 (2011) 175-187

Soil pH Greatly Influences Microbial Diversity

Biochar Bulk Density (BD) and Effect on Soil

Biochar Effect on Soil Water Holding Capacity

Jeffery et al., 2015. Biochar effect on crop yield

WES:

UN

FIGURE 2 Relative changes of index for major N-cycling processes in biochar-treated soils compared with controls. Bars indicate 95% confidence intervals, and the number of observations is displayed on the upper portion of the bar. (a) N transformations include soil N mineralization ratio (MIN), nitrification ratio (NIT), and denitrification ratio (DENIT); (b) N fixations include biological N₂ fixation (BNF) and plant N uptake (PNU); (c) N losses include soil NH₃ volatilization (NH₃V), N₂O (N₂OE) and NO (NOE) emissions, and soil N leaching (NL)

Effects of biochar on soil microbial responses

(AOA, ammonium-oxidizing archaea; AOB, ammoniumoxidizing bacteria; CFU, colony-forming unit; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; PLFA, phospholipid fatty acid. AOB and AOA were commonly measured with quantitative PCR targeting the ammonia monooxygenase gene *amoA*)

Kerner et al., 2023; https://doi.org/10.1021/acs.est.3c04201

STA

UNIVEI

FIGURE 2 Selected parameters with highest agronomic relevance that were investigated in the 26 reviewed metaanalyses. The mean overall effect size (% change) and 95% confidence intervals are given as reported in the original studies. The numbers in parentheses indicate the number of pairwise comparisons used for that specific parameter

Mean effect size (%) ± 95% CI

Biochar Effect on Plant Available Metals

18-01

WEST VIRGIN

UNIVER

Oxygen and Ash content effect on Cu Sorption Capacity of Sugar Cane Bagasse Biochar

A. Hass, I.M. Lima / Environmental Technology & Innovation 10 (2018) 16-26

23

Fig. 2. Cu sorption capacity (*q*_{max}) and oxygen (A) and ash (B) content of old bagasse biochars (arrows point to the direction of increase in pyrolysis temperature of activated [solid line], and non-activated [dissected line] biochars; solid regression line are exponential fit for all observations).

Biochar – Where Do we Go From Here

Biochar_G – Biochar at The Age of Comix

Biochar Application Rate Effect

Biochar 5% as is

United States Department of Agriculture

Amir Hass, Ph.D. Associate Research Professor of Soil Water and Natural Resources Management at West Virginia State University amirhass@wvstateu.edu 304.204.4045

MID-ATLANTIC SUSTAINABLE BIOMASS FOR VALUE-ADDED PRODUCTS CONSORTIUM (MASBIO). USDA NIFA AFRI, WVA00926 acc. #1022965

Climate Smart Technologies Evaluation And Dissemination In Disadvantage Appalachian Farming Communities. USDA Evans Allen Capacity Grant, Wvax-MultiState acc. #7003783

Agricultural Research & Extension

U.S. Department of Agriculture Natural Resources Conservation Service

HOME ABOUT IBI ~ ABOUT BIOCHAR ~

BIOCHAR ~ RESOURCES ~

STANDARD, CERTIFICATION, & TRAINING ~

NEWS ~

Biochar Classification Tool

Home / Resources / Biochar Classification Tool

Biochar may offer direct and indirect benefits when applied to soils. These benefits are based on diverse material properties of manifested when added to fulfil specific soil/crop needs. The *IBI Biochar Classification Tool*—derived from the paper *A biochar and associated test methods*¹—classifies biochars based on a set of physicochemical properties (most of them tested for in th *Standards*). At present, four biochar properties are classified:

- · Carbon storage value
- Fertilizer value (P, K, S, and Mg only)
- Liming value

WEST VIRGINIA STATE

Particle size distribution

sBC,100 ≥ 600g kg¹ 500g kg⁻¹ ≤ sBC₊₁₀₀ < 600g kg⁻¹ 400g kg⁻¹ ≤ sBC₊₁₀₀ < 500g kg¹ **Carbon storage classes** 300g kg⁻¹≤ sBC₊₁₀₀ < 400g kg⁻¹ sBC₊₁₀₀ < 300g kg¹ Fertilizer value 4 nutrients Fertilizer value 3 nutrients Fertilizer value 2 nutrients Fertilizer classes Fertilizer value 1 nutrient Avail. P205<1.00% + avail. K20<0.55% + avail. S<0.15% + avail. MgO<0.35% CaCO₃- eq ≥ 20% $10\% \le CaCO_3 - eq < 20\%$ 2 Liming classes 1% ≤ CaCO₃- eq < 10% CaCO₃- eq < 1% 0

Particle size classes

Suitability for soilless agriculture

Fraction >16mm (%;w/w)

Fulfillment of physical and chemical requirements for either potting mixes or soilless agriculture according to local regulations

Why Biochar? Carbon Emission & Sequestration

Fig. 14. Disease severity of powdery mildew (*Leveillula taurica*) on tomato as affected by biochar additions (a) in both a sand and a coconut fiber-tuff soilless potting medium (mix); (b) in sand; (c) in the potting medium over 105 days (Elad et al., 2010; with permission).

J. Lehmann et al. / Soil Biology & Biochemistry 43 (2011) 1812-1836

Why Now? Why Soil? Why Biochar?

REMARKABLE WEATHER OF 1911 The Effect of the Combustion

of Coal on the Climate - What Scientists Predict for the Future

By FRANCIS MOLENA

for breath, while the burning sun and

THE year 1911 will long be re- The mean temperature of every month membered for the violence of its except November was above the averweather. The spring opened mild and age of that of the 40 years covered by delightful, but in June a torrid wave the records of the United States of unparalleled severity swept over the Weather Bureau. The average daily country. The cities baked and gasped excess was from four to six degrees. With only one month out of twelve hot winds withered the corn and cost below normal, one may well ask if the farmers a million dollars a day. the climate is not changing and get-

Popular Mechanics March 1, 1912 Popular Mechanics - Google Books

Carl Sagan testifying before Congress in 1985 on climate change

Better Than Never...

1876 – Virgin Grassland Soil (Morrow Plots, University of Illinois)

RAF WWII: 125,000 aircrew, 75,446 airmen (60%) were killed, wounded or taken prisoner

Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments (*IPCC Guidelines for National Greenhouse Gas Inventories*)

ANNUAL CHANGE IN BIOCHAR CARBON STOCK IN MINERAL SOILS RECEIVING BIOCHAR ADDITIONS

$$\Delta BC_{Mineral} = \sum_{p=1}^{n} \left(BC_{TOT_p} \bullet F_{C_p} \bullet F_{perm_p} \right)$$

- $\Delta BC_{Mineral}$ = the total change in carbon stocks of mineral soils associated with biochar amendment, tonnes sequestered C yr⁻¹
- BC_{TOT_p} = the mass of biochar incorporated into mineral soil during the inventory year for each biochar production type p, tonnes biochar dry matter yr⁻¹
 - = the organic carbon content of biochar for each production type p, tonnes C tonne⁻¹ biochar dry matter, Table 4Ap.1
 - = fraction of biochar carbon for each production type p remaining (unmineralised) after 100 years, tonnes sequestered C tonne⁻¹ biochar C, Table 4Ap.2
 - = the number of different production types of biochar

 F_{C_p}

 F_{perm_p}

n

Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments (*IPCC Guidelines for National Greenhouse Gas Inventories*)

ANNUAL CHANGE IN BIOCHAR CARBON STOCK IN MINERAL SOILS RECEIVING BIOCHAR ADDITIONS

$$\Delta BC_{Mineral} = \sum_{p=1}^{n} \left(BC_{TOT_p} \bullet F_{C_p} \bullet F_{perm_p} \right)$$

- $\Delta BC_{Mineral}$ = the total change in carbon stocks of mineral soils associated with biochar amendment, tonnes sequestered C yr⁻¹
- BC_{TOT_p} = the mass of biochar incorporated into mineral soil during the inventory year for each biochar production type p, tonnes biochar dry matter yr⁻¹
 - = the organic carbon content of biochar for each production type p, tonnes C tonne⁻¹ biochar dry matter, Table 4Ap.1
 - = fraction of biochar carbon for each production type p remaining (unmineralised) after 100 years, tonnes sequestered C tonne⁻¹ biochar C, Table 4Ap.2
 - = the number of different production types of biochar

 F_{C_p}

 F_{perm_p}

n

WEST VIRGINIA

VALUES FOR ORGANIC C CONTENT FACTOR OF BIOCHAR BY PRODUCTION TYPE (F_{C_p}).

Feedstock	Pyrolysis Production Process	Values for F_{C_p} ²
A	Pyrolysis ¹	$0.38\pm49\%$
Animai manure	Gasification ¹	$0.09 \pm 53\%$
Wood	Pyrolysis	$0.77 \pm 42\%$
Wood	Gasification	$0.52 \pm 52\%$
Herbaceous (grasses, forbs,	Pyrolysis	$0.65 \pm 45\%$
rice straw)	Gasification	$0.28\pm50\%$
Discharder and discussion	Pyrolysis	$0.49\pm41\%$
Rice husks and rice straw	Gasification	0.13 ± 50%
Net shalls with and stores	Pyrolysis	$0.74\pm39\%$
Nut shells, pits and stones	Gasification	$0.40 \pm 52\%$
Biosolids (paper sludge, sewage	Pyrolysis	$0.35\pm40\%$
sludge)	Gasification	$0.07 \pm 50\%$

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory

VALUES FOR F_{perm_p} (FRACTION OF BIOCHAR C REMAINING AFTER 100 YEARS)

Production	Value for $F_{perm_p}^{1,2}$
High temperature pyrolysis and gasification (> 600 °C)	$0.89\pm13\%$
Medium temperature pyrolysis (450-600 °C)	$0.80 \pm 11\%$
Low (350-450 °C)	$0.65\pm15\%$

ON THIS PAGE

WEST VIRGINIA

STATE

UNIVERSITY

OVERVIEW

Verra sets the world's leading standards for climate action and sustainable development.

CO₂ Emission from Biochar Amended Soil

TN; R² = 0.865

Thermal Decomposition

WEST VIRGINIA STATE

Thermochemical	Temp. (°C)	Other defining parameters	Gas	Liquid	Solid	Major intended product
Carbonization	300-1200	Air tightness, residence time, materials	60–75	3–5	10–35	Charcoal; solid fuel and industrial input
Pyrolysis (for bio-oil)	400–600	Heating rates, residence time, particle size, gas flow rates	20-40	40–70	10–25	Bio-oil; chemical products and fuels
Pyrolysis (for biochar)	300–700	Residence time, heating rates	40–75	0–15	20–50	Biochar; soil amendment, carbon sequestration and bioremediation
Gasification	500-1500	Oxidizing media, equivalence ratio	85–95	0–5	5-15	Syngas; gaseous fuel for heat and power, and gas to liquid
processing	200–400	Elevated pressures, solvent type and ratio (e.g. water)	0–90	0–80	0–60	Various chemical products
Combustion	1000-1500	Excess air for complete combustion	95	0	5	Energy converted to heat and power

Biochar for environmental management, Routledge, 2015

Average stored carbon in tonnes per hectare at a ground depth of one meter Sources: IPCC: NASA

1891 WEST VIRGINIA STATE

UNIVERSITY

UNFCCC Webinar on SOC-session 3 (part 1).pdf

(Condensed) Aromatic Structure Van Krevelen Diagram

WEST VIRGINIA

A Novel Approach to the Production of Biochar with Improved Fuel Characteristics from Biomass Waste

The Ring-of-Fire

