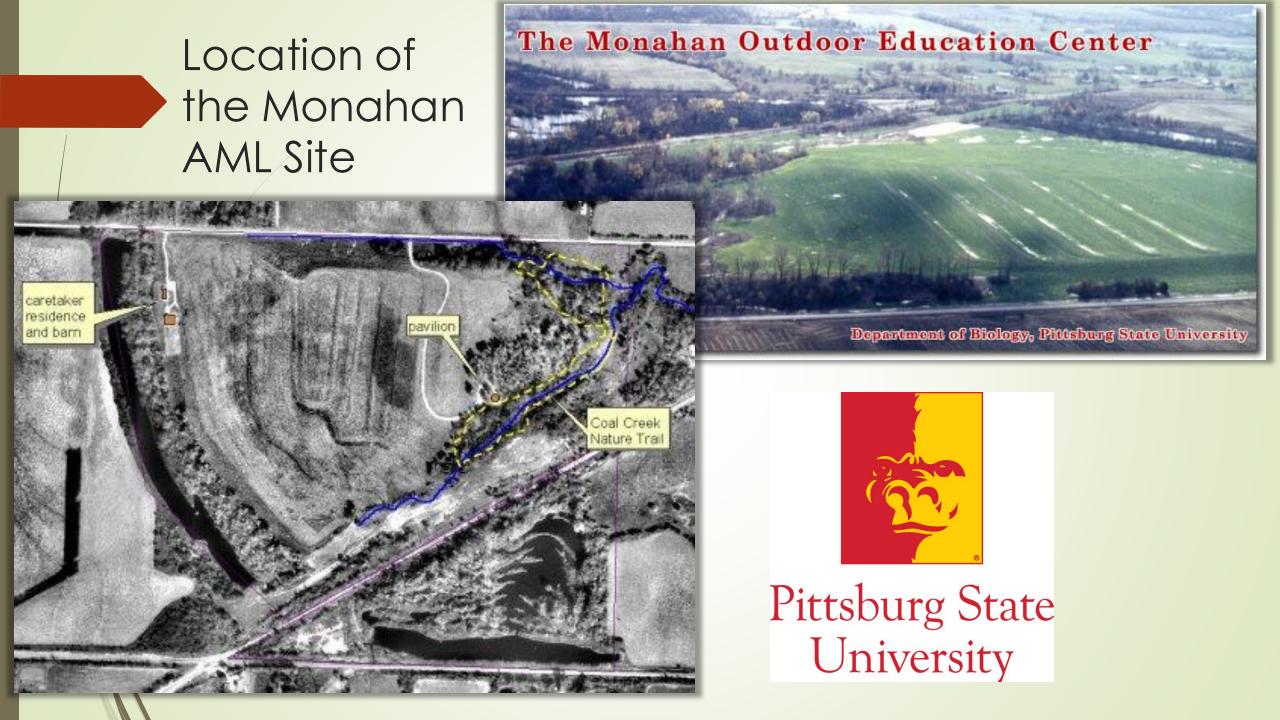

### Investigation Acidic Discharges at the Monahan Abandoned Mine Lands Site, Kansas\*


- P. Behum, Ph.D.<sup>1</sup>, M. Spence<sup>2</sup>, J. Arruda, Ph.D.<sup>3</sup>, R. Johnson<sup>4</sup> and C. Kiser<sup>5</sup>
- 1 Hydrologist, Office of Surface Mining Reclamation and Enforcement (OSMRE), Interior Regions 3, 4 and 6.
- 2 Administrator, Kansas Department of Health and Environment (KDHE), Surface Mining Unit.
- 3 Professor of Biology, Dept. of Biology, Pittsburg State University (PSU, retired).
- 4 Environmental Associate, Kansas Department of Health and Environment, Surface Mining Unit.
- 5 Mining Engineer, Office of Surface Mining Reclamation and Enforcement, Interior Regions 3, 4 and 6.
- \*Presented at the 41st Annual Meeting of the American Society of Reclamation Sciences (ASRS), June 2-6, 2024, in Knoxville, TN.

# Investigation Acidic Discharges at the Monahan Abandoned Mine Lands Site, Kansas - What will we be Covering?

- Location and history of coal mining at the Monahan AML site.
- Occurrence of acid mine drainage (AMD) at Monahan.
- Previous Investigations.
- ► KDH&E/OSMRE/PSU Baseline Hydrologic Investigation.
  - Updated water quality of AMD and freshwater resources.
  - Weir installation and flow measurements.
  - Jar testing.
- Topographic Mapping.
- Conceptual design of the Monahan Passive Treatment System (PTS).
- Final Engineering design and construction of the Monahan PTS.
- Preliminary PTS Performance.

### Location of the Monahan AML Site





### History of Coal Mining at the Monahan Site



Project Description (extracted in part from Arruda, 2003)

**Date** 

1940-1980's





| 1899-1918   | The 3-ft. thick Weir-Pittsburg coal interval was underground mined beneath the Monahan site by the Western Coal Mining Co.;       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------|
|             | 100-ft. deep shafts were located onsite.                                                                                          |
| 1930-1940's | From the mid-30s to early-40's the 1.5 ft. thick Mineral coal seam extracted by area-type surface mining (Commercial Fuels Co.    |
|             | Mine #10); the 25 ft. overburden removed by a stripping shovel.                                                                   |
| 1930-1940's | Coal from several Commercial Fuels Co. surface mines were processed onsite by wet-type shaker screens. A 30-acre slurry pond      |
|             | contains ~ 15-ft. thick of coal refuse fines contains about composed of about 50% of the high sulfur coal. An adjacent coarse     |
|             | refuse "gob" pile was partially burned after abandonment (red slope areas; Imhoff, 1994).                                         |
| 1930-1940's | A 17-acre gob pile has a 20-30 ft. height (USDA-SCS, 1983); in sum,~80 acres were covered with acid-forming coal waste materials. |
|             |                                                                                                                                   |

graded gob pile (Fig. 4) and several shallow acidic impoundments formed in the slurry area with a pH 2.2-2.6.

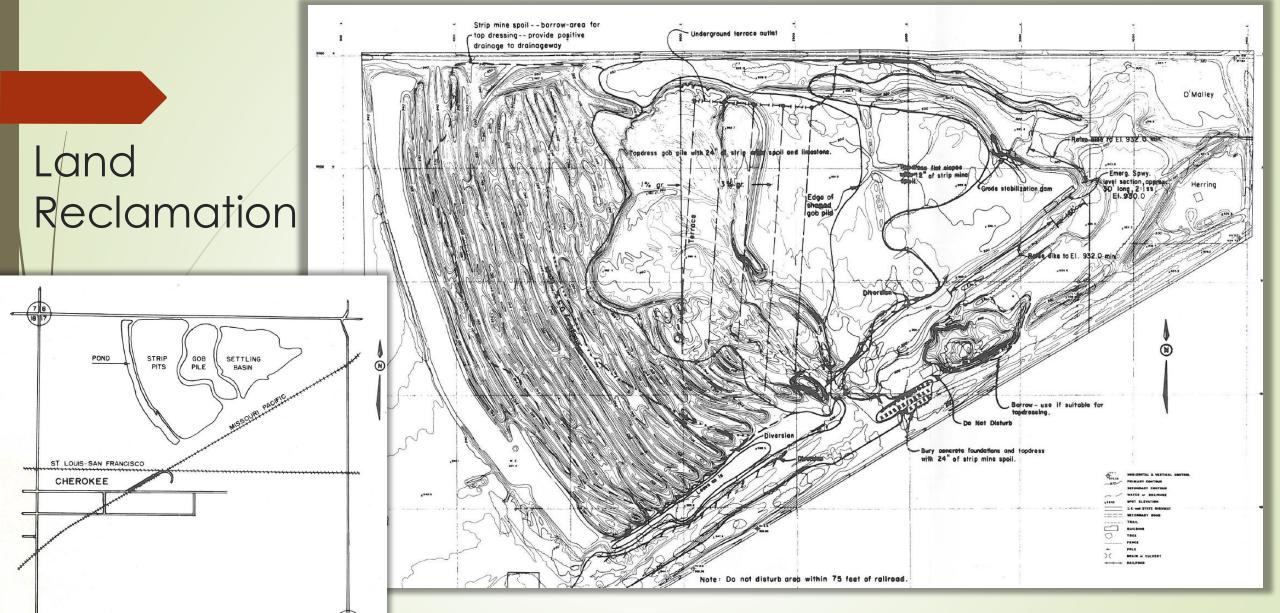
The 80-acre Monahan AML site formed a more-or-less barren wasteland. AMD seepage developed along the north end of the re-

### 1983 RAMP Program Land Reclamation





|                                 |          | 0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 |
|---------------------------------|----------|---------------------------------------------------------------------------------------------------------------|
| ITEM                            | UNIT     | QUANTITY                                                                                                      |
| GRADE STABILIZATION DAM         | J        | OB                                                                                                            |
| RAISE DIKE TO EI. 932.0         | Cu. Yd.  | 122                                                                                                           |
| DIVERSIONS                      | Lin. Ft. | 1,550                                                                                                         |
| BURY CONCRETE FOUNDATIONS       | J        | 08                                                                                                            |
| RESHAPE GOB PILE (Exc.)         | Cu. Yds. | 136,000                                                                                                       |
| CRUSHED LIMESTONE               | Tons     | 17,000                                                                                                        |
| TOP DRESSING                    | Cu. Yds. | 121,000                                                                                                       |
| TERRACES                        | Cu. Yds. | 9,520                                                                                                         |
| UNDERGROUND TERRACE CUTLET      | J        | ОВ                                                                                                            |
| GATES                           | Each     | 4                                                                                                             |
| FENCE                           | Lin. Ft. | 8,200                                                                                                         |
| LIME                            | Tons     | 560                                                                                                           |
| SEEDING, MULCHING & FERTILIZING | Acres    | 80                                                                                                            |
| WOODY PLANTS                    | J        | ОВ                                                                                                            |
| IDENTIFICATION SIGN             | Each     |                                                                                                               |


TABLE OF QUANTITIES

#### Date

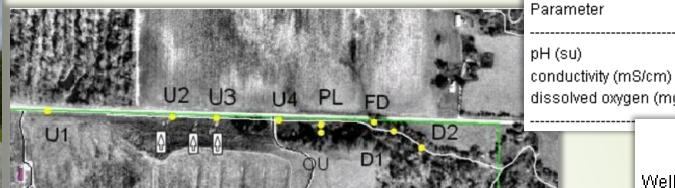
#### Project Description (extracted in part from Arruda, 2003)

1984-1985

Reclamation was conducted by the Natural Resources Conservation Service (NRCS) using Rural Abandoned Mine Program (RAMP) funds, which reclaimed an old "gob" pile and established prairie vegetation (Reals reconstruction; USDA-SCS,1983). This project regraded the mine spoil and filled acid pits with gob, placed 1-foot layer of agricultural ground limestone over 34 acres underlain with gob, covered most of the site with 1-ft. of weathered mine spoil, and constructed five terraces on the western slope of the reshaped gob pile with a subsurface terrace drain outlet to a road ditch that extends along the northern boundary.



REALS SITE LOCATION MAP


near city of Cherokee in Crawford County, Kansas

T 3 I S - R 24 E

Source: Reals Reconstruction; USDA-SCS,1983

### Previous AMD Investigations





| dissolved ox | ygen (mg/L | 1.5 | 1.1 | 1.2      |
|--------------|------------|-----|-----|----------|
| A            |            | Tot | al  |          |
|              |            | Iro | n   | Sulfates |
|              | Well       | (mg | /L) | (mg/L)   |
| <b>PE</b>    |            |     |     |          |
| 100          | East       | 114 | 10  | 390      |
| 25           | West       | 113 | 30  | 340      |
| 8000         | North      | 278 | 60  | 620      |

4.72

4.87

Mean

3.56

AMD along road ditch (U1 to U4).

PSU well data and sample location map (Arruda, 2003)

| Date       | Project Description (extracted in part from Arruda, 2003)                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------|
| 1987, 1993 | Vegetation surveys by PSU Dept. of Biology staff and graduate students (Vickers, 1989; Yates, 1996) which found sparse     |
|            | vegetation being replaced in time by a diverse range of species that covered most of the site.                             |
| 1990-1991  | Reconnaissance investigation of AMD at the Monahan site by PSU Dept. of Biology graduate student (Imhoff, 1994).           |
| 2000       | KDHE's Bureau of Environmental Remediation installed a set of 3 monitoring wells to evaluate the movement of water beneath |
|            | the refuse cap and further understand the processes occurring near the north slope AMD seeps.                              |
| 2000-2003  | Two initial baseline water quality investigations were conducted by Pittsburg State University (Arruda, 2003) which        |
|            | systematically identified water quality across at the site.                                                                |
| 2012       | KDHE Bureau of Environmental Remediation conducted a Pre-CERCLIS* survey of the Monahan site; Cd and Zn were found to      |
|            | exceed surface water quality standards at several locations.                                                               |

\*CERCLIS (SEMS) is a repository for site and non-site-specific Superfund data from 1983 to the present.



#### Baseline Hydrologic Investigation: Sample Site Locations

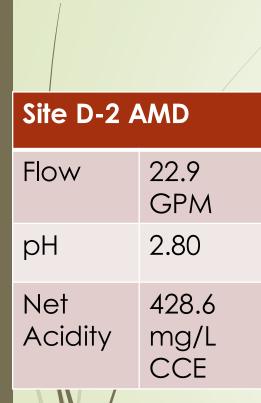


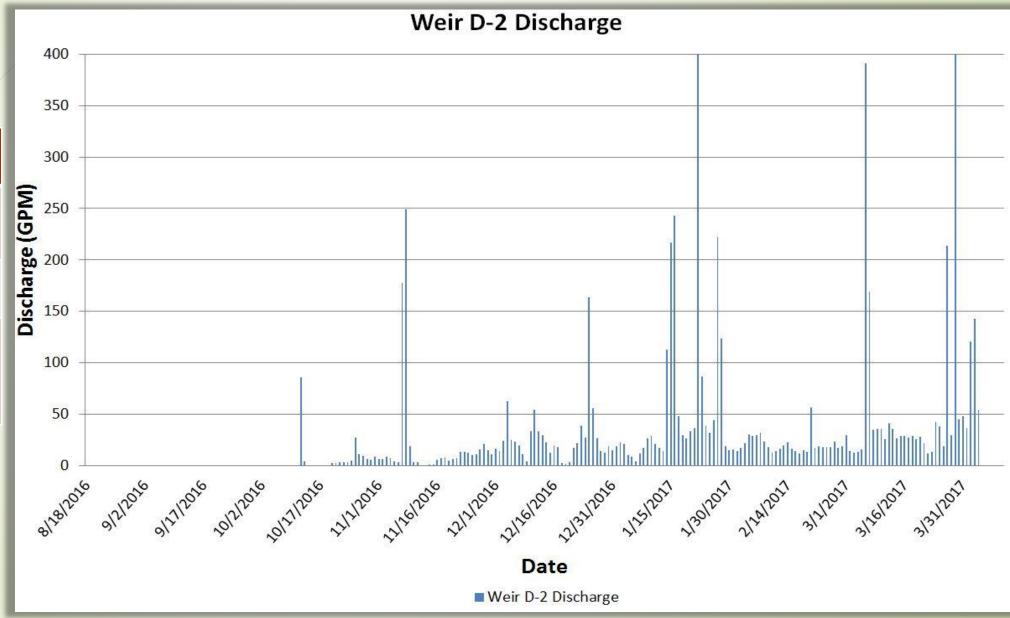
### KDHE/OSMRE/PSU Baseline Hydrologic Investigation: Baseline Water Data

|            | Discharge<br>(GPM)* | Field<br>pH | SpecC.<br>(mS/cm) | D. Fe<br>(mg/L) | D. Al<br>(mg/L) | D. Mn<br>(mg/L) | D. Ni<br>(mg/L) | D. Zn<br>(mg/L) | Sulfate<br>(mg/L) | Acidity <sub>calc</sub><br>(mg/L CCE) | Alkalinity<br>(mg/L CCE) | Net Acid.<br>(mg/L CCE) |
|------------|---------------------|-------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|---------------------------------------|--------------------------|-------------------------|
| AMD        |                     |             |                   |                 |                 |                 |                 |                 |                   |                                       |                          |                         |
| D-1        | 8.85                | 2.84        | 3.065             | 193.38          | 12.423          | 22.75           | 0.460           | 1.110           | 2,000.0           | 639.75                                | 0.00                     | 639.75                  |
| D-2        | 22.92               | 2.80        | 3.360             | 109.15          | 20.467          | 18.50           | 0.214           | 1.810           | 1,992.5           | 428.59                                | 0.00                     | 428.59                  |
| D-3        | 18.35               | 2.87        | 2.140             | 37.90           | 8.900           | 9.10            | 0.182           | 1.090           | 1,500.0           | 223.14                                | 0.00                     | 223.14                  |
| D-4        | 111.08              | 3.67        | 1.575             | 4.44            | 5.045           | 7.56            | 0.120           | 0.019           | 1,150.0           | 66.83                                 | 0.00                     | 66.83                   |
| Dilution V | Vater               |             |                   |                 |                 |                 |                 |                 |                   |                                       |                          |                         |
| PIT        | 0.00                | 7.70        | 1.065             | 0.07            | 0.022           | 0.53            | 0.005           | 0.050           | 344.2             | 1.33                                  | 104.00                   | -102.67                 |
| ВР         | 6.38                | 6.59        | 2.175             | 0.65            | 0.026           | 4.40            | 0.048           | 0.050           | 1,049.3           | 2.02                                  | 88.00                    | -85.98                  |
| SP         | 0.00                | 7.76        | 1.028             | 0.04            | 0.026           | 1.00            | NT              | NT              | 400.0             | 2.02                                  | 104.00                   | -101.98                 |
| ST         | 25.40               | 6.82        | 1.523             | 0.35            | 0.031           | 2.07            | 0.024           | 1.190           | 845.0             | 5.87                                  | 64.40                    | -58.53                  |
| 1:1 Blend  |                     |             |                   |                 |                 |                 |                 |                 |                   |                                       |                          |                         |
| SP/D-1     |                     | 3.15        | 2.080             | 82.00           | 5.920           | 13.00           | NT              | NT              | 1,100.0           | 441.55                                | 0.00                     | 441.55                  |
| Blend      |                     |             |                   |                 |                 |                 |                 |                 |                   |                                       |                          |                         |

- 1) Source AMD (D1 and D2) had a high concentration of metals (Fe > 100 mg/L, Mn >18, Al >14 mg/L and Zn > 1.1 mg/L).
- 2) Weir at Site D-2 used to estimate AMD discharge ~ 23 GPM; dilution water weir at Site ST ~25 GPM.
  - A blend of AMD (Site D-1) and dilution water (Site SP) was modelled with Geochemist Workbench: Blend is net acidic (441 mg/L CCE) with a pH = 3.15 and moderate Al ( $\sim$ 6 mg/L).
- 4) Added dilution by slurry cell (BP) and pit impoundment (ST) (compare D3 and D4 to D1 and D2).

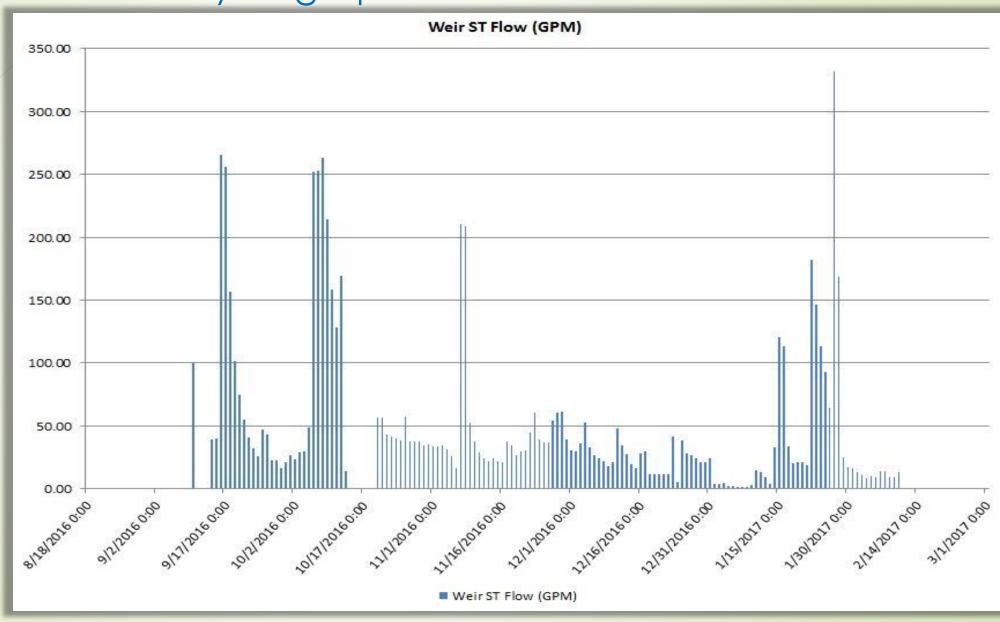
Team weir construction in the Reals Pavilion

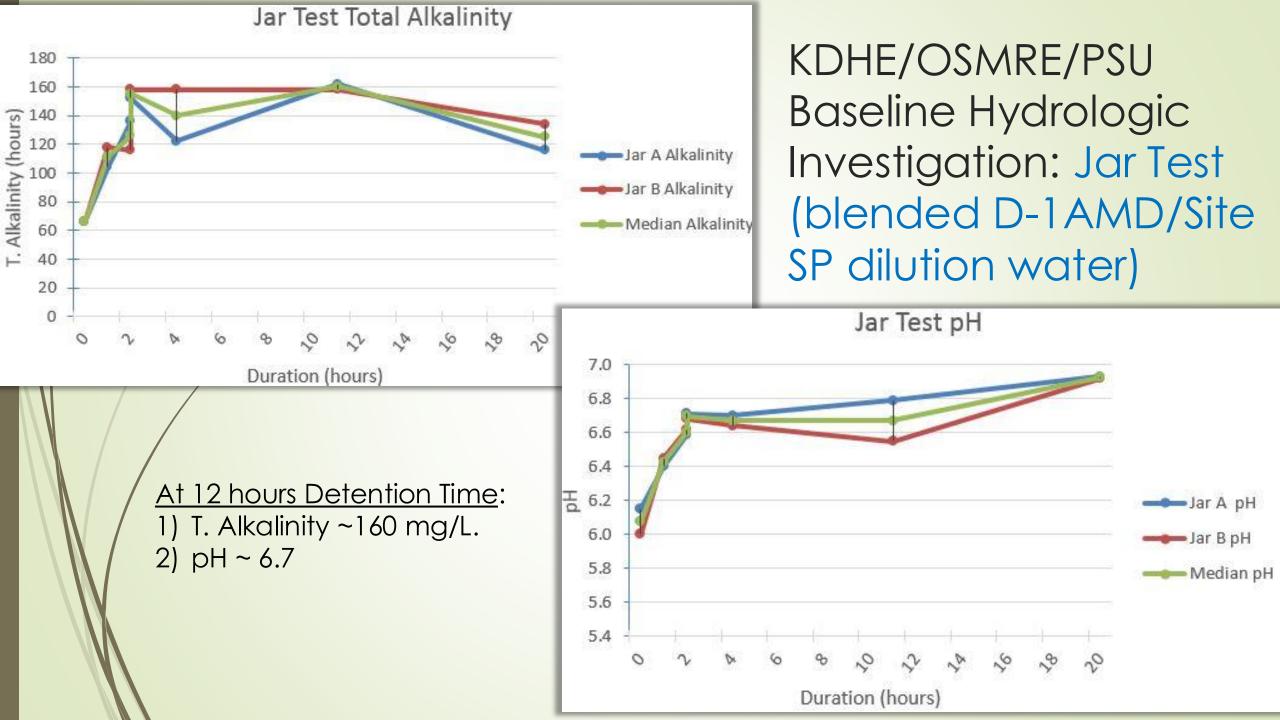




# KDHE/OSMRE/PSU Baseline Hydrologic Investigation: Weir Installation and Discharge Measurements



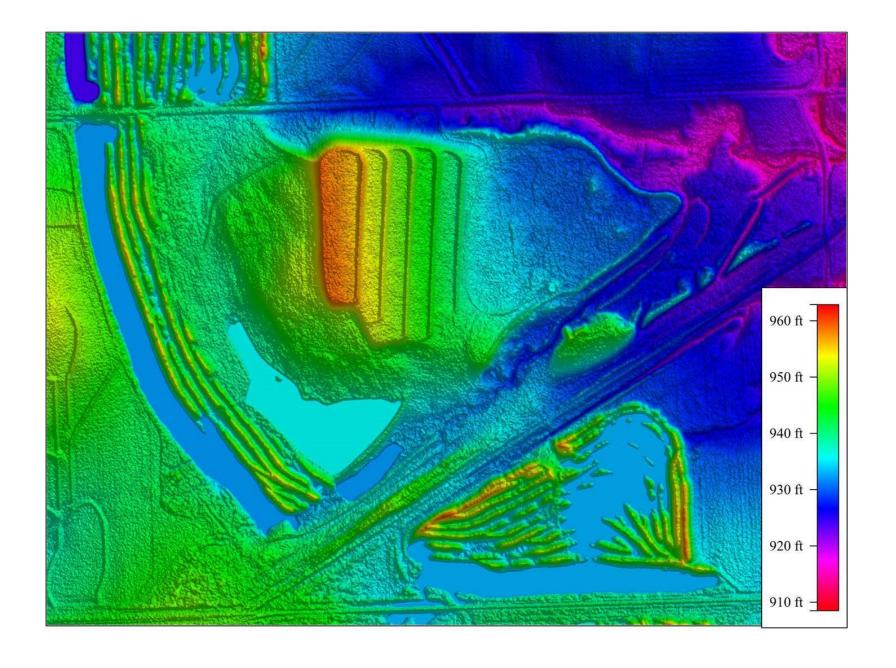

Wier installed at AMD site D-2


### KDHE/OSMRE/PSU Baseline Hydrologic Investigation: Site D-2 Raw AMD Hydrograph






### KDHE/OSMRE/PSU Baseline Hydrologic Investigation: Site ST Dilution Water Hydrograph



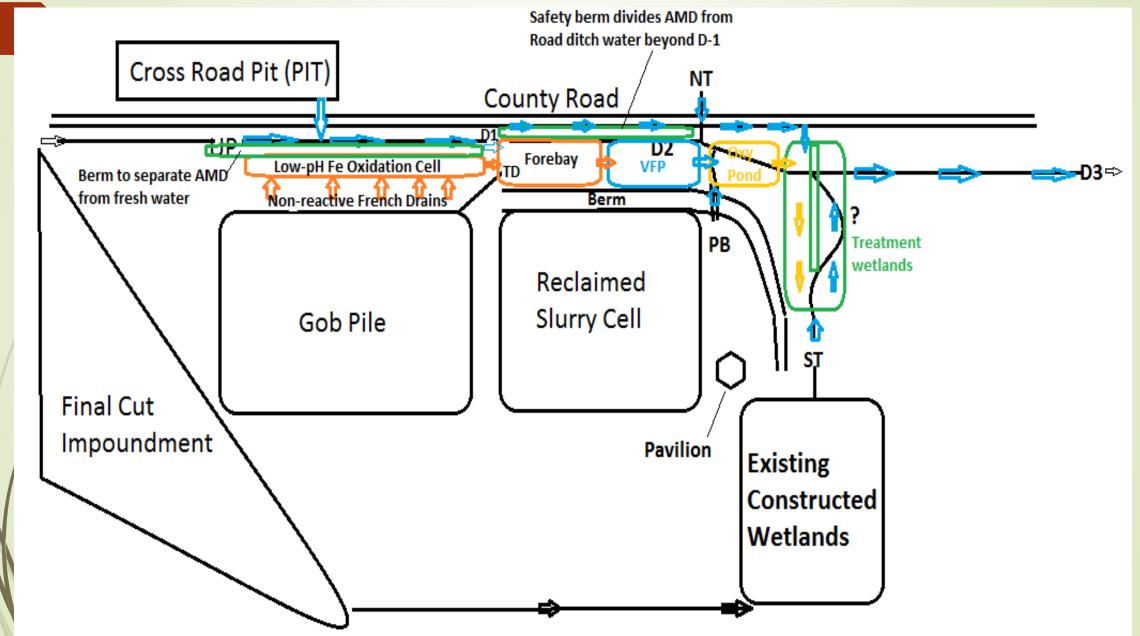





Topographic Mapping:
Lidar-derived
Data

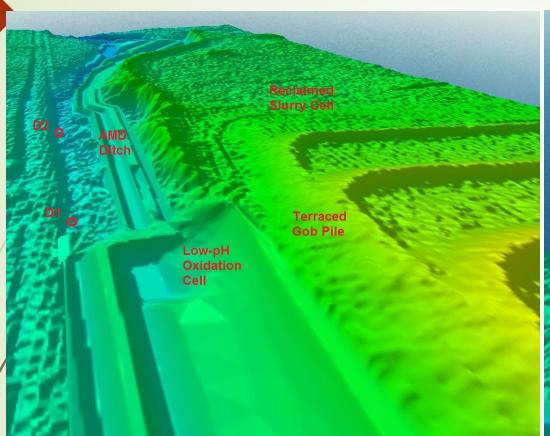
Imagery generated by Chis Kiser, P.E.

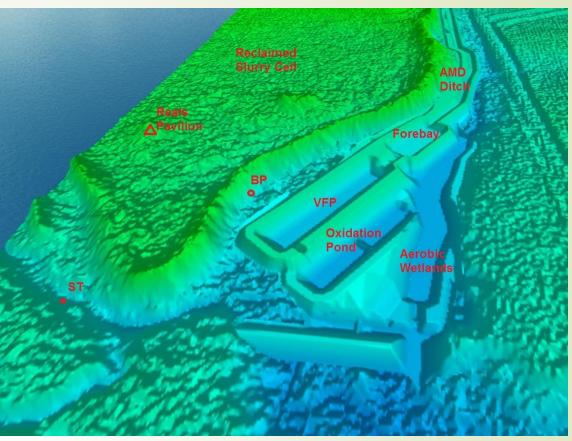



### Conceptual Design: AMD remediation at Monahan.



Site BP – Berm pipe discharge (runoff accumulating in the former slurry cell.


- Removal of acid-forming materials, burial within mine spoil fill, and replace with weathered spoil.
- Collection of AMD by a French drain using non-reactive stone plus a collection ditch.
- Dilute AMD with final impoundment water (Site SP @1:1 to 2:1).
- Promote low pH iron oxidation in 2 shallow water cells and an AMD conveyance ditch.
- Passively add alkalinity with a vertical flow pond (VFP).
- Promote Fe and Mn precipitation in a followup 2-cell oxidation pond & aerobic wetland.
- Dilute treated water with discharges ST and BP.

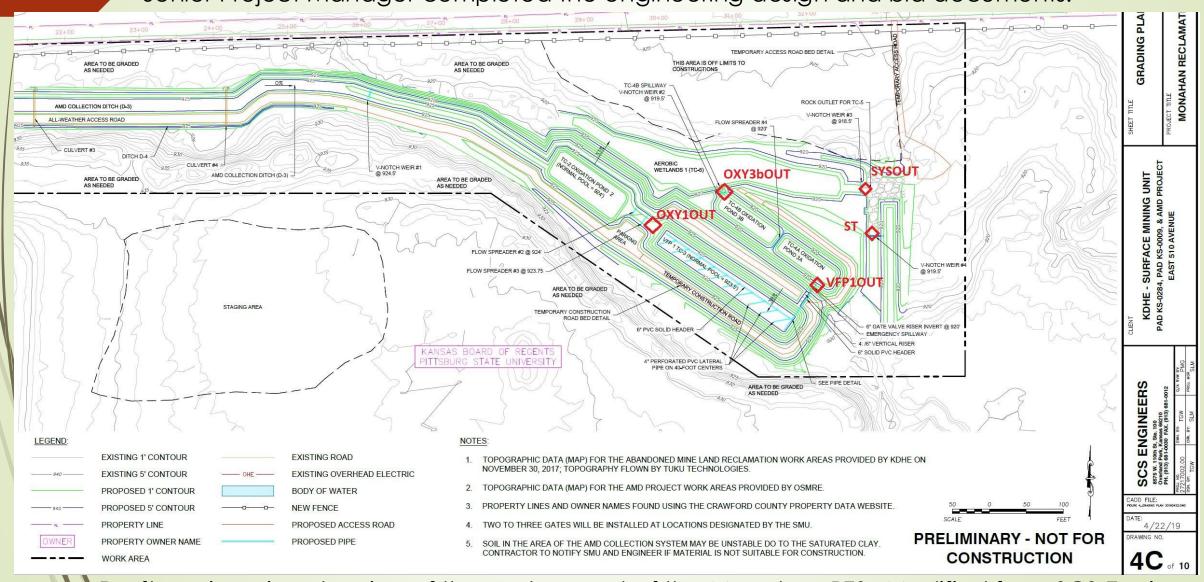

### Flowchart: Original Monahan PTS Design



#### Revised Conceptual Design of the Monahan PTS

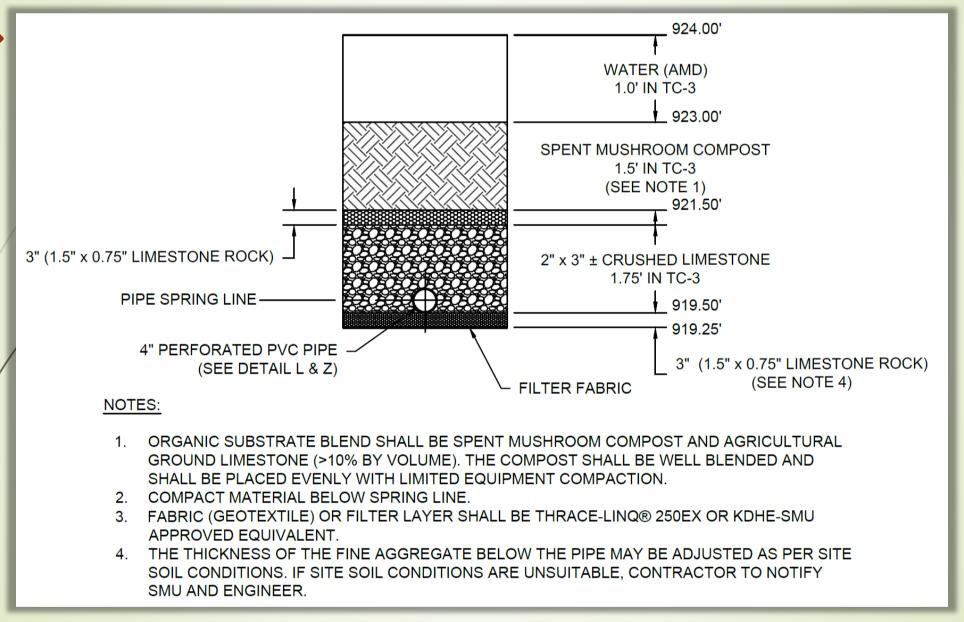
Imagery generated by Chis Kiser, P.E.






|   | Date      | Project Description                                                                                          |
|---|-----------|--------------------------------------------------------------------------------------------------------------|
|   | 2017-2018 | KDHE/OSM passive treatment design employing OSMRE-TIPS <i>AMDtreat</i> and various CAD and mapping software. |
| \ | 2019-2020 | Final engineering design completed by SCS Engineers, Overland Park, Kansas                                   |
|   | 2022-2023 | Construction of the Monahan Passive Treatment System.                                                        |

Topographic model of OSM's conceptual PTS design.


### Final Engineering Design: The Monahan PTS SCS Engineers of Overland Park, Kansas lead by Susan L. McCart, P.E., P.G.

Senior Project Manager completed the engineering design and bid documents.



Draft engineering drawing of the eastern part of the Monahan PTS \_Modified from SCS Engineers.

### Monahan VFP Design



Vertical flow pond cross-section - Monahan PTS by SCS Engineers.

Monahan VFP excavation

Precast Weir

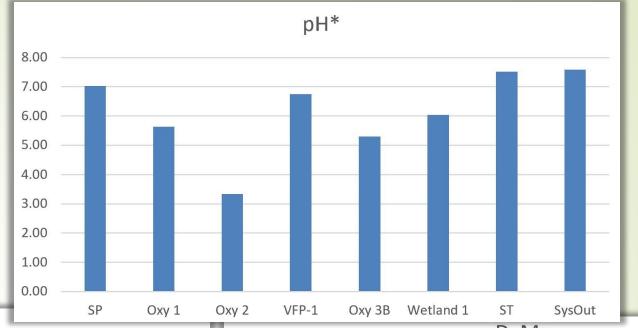
### Monahan PTS Construction

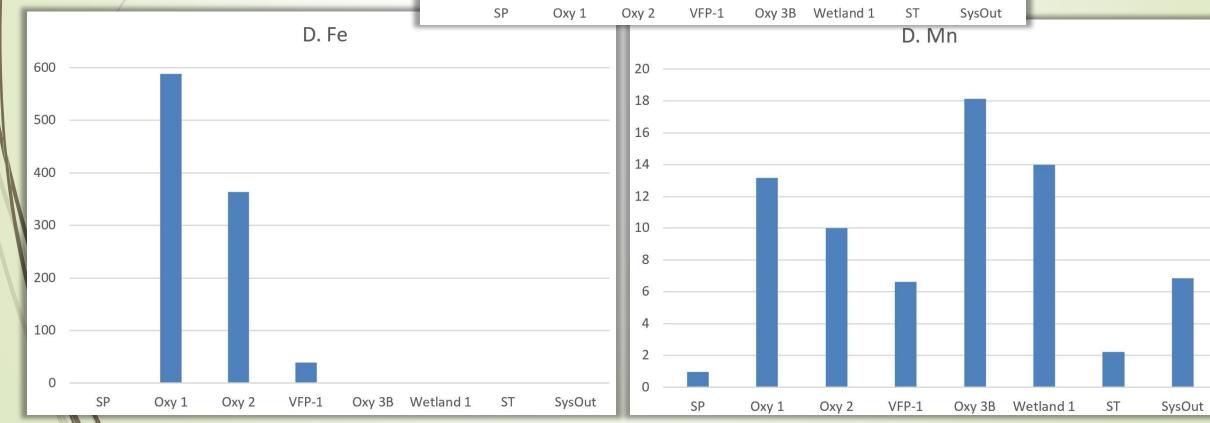
AMD collection ditch 2022



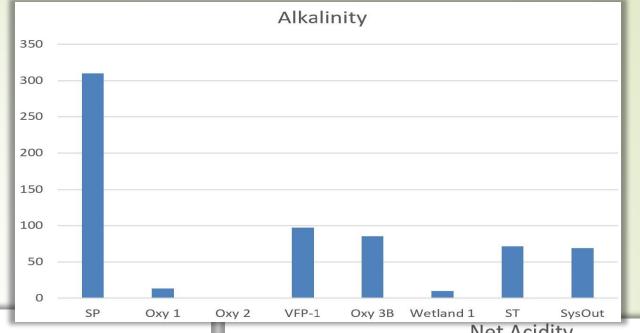
VFP May 2024 Monahan PTS Construction As-Built Wetland 1 May 2024 Oxidation Pond 3

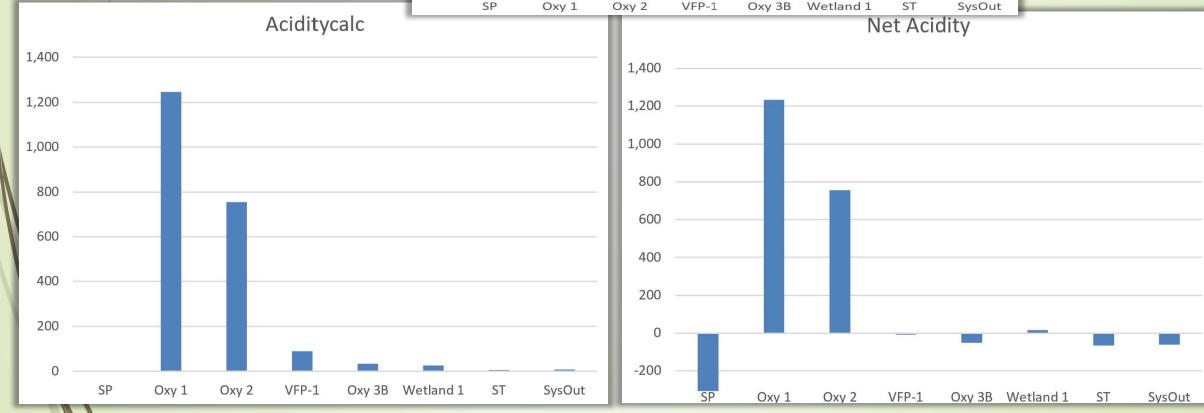
### Monahan PTS – <u>Preliminary</u> Performance


| Sample Location | рН   | SpecC<br>(mS/cm) | D. Fe<br>(mg/L) | D. Al<br>(mg/L) | D. Mn<br>(mg/L) | D. Ni<br>(mg/L) |       | Sulfate<br>(mg/L) | Acidity <sub>calc</sub><br>(mg/L CCE) | Alkalinity<br>(mg/L CCE) | Net Acidity<br>(mg/L CCE) |
|-----------------|------|------------------|-----------------|-----------------|-----------------|-----------------|-------|-------------------|---------------------------------------|--------------------------|---------------------------|
| SP (DW*)        | 7.03 | 3 2.112          | 0.221           | 0.130           | 0.953           | 0.023           | 0.012 | 1,192             | 2.70                                  | 310.00                   | -307.30                   |
| Oxy 1           | 5.63 | 3.600            | 588.19          | 0.676           | 13.18           | 0.018           | 0.381 | 2,824             | 1,245.56                              | 13.33                    | 1,232.23                  |
| Oxy 2           | 3.34 | 3.365            | 363.67          | 0.466           | 10.00           | 0.023           | 0.309 | 2,751             | 755.97                                | 0.00                     | 755.97                    |
| VFP-1           | 6.75 | 2.562            | 38.90           | 0.097           | 6.61            | 0.048           | 0.023 | 3 1,886           | 89.50                                 | 97.30                    | -7.80                     |
| Оху 3В          | 5.29 | 1.685            | 0.470           | 0.046           | 18.14           | 0.023           | 0.017 | 7 1,482           | 34.31                                 | 85.45                    | -51.14                    |
| Wetland 1**     | 6.03 | 3 2.530          | 0.195           | 0.026           | 14.00           | )               |       | 1,705             | 25.95                                 | 10.00                    | 15.95                     |
| ST (DW*)        | 7.52 | 1.581            | 0.195           | 0.077           | 2.23            | 3 0.014         | 0.067 | 7 964             | 4.94                                  | 71.61                    | -66.67                    |
| System Out      | 7.58 | <b>3</b> 1.685   | 0.093           | 0.028           | 6.84            | 0.010           | 0.036 | 1,002             | 7.37                                  | 69.15                    | -61.78                    |


#### Compare Oxy 2 (VFP 1 Inlet) to SP/D1 Blended AMD from Baseline Study

|                 | Discharge<br>(GPM)* | Field<br>pH | 0000000 |       |       |       |    |    |         | CONTRACTOR OF THE CONTRACTOR O | Alkalinity<br>(mg/L CCE) | Net Acid.<br>(mg/L CCE) |
|-----------------|---------------------|-------------|---------|-------|-------|-------|----|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
| SP/D-1<br>Blend |                     | 3.15        | 2.080   | 82.00 | 5.920 | 13.00 | NT | NT | 1,100.0 | 441.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                     | 441.55                  |


\*DW = Dilution water source; \*\*Wetland 1 is under repair.


## Monahan PTS – Preliminary Performance





# Monahan PTS – Preliminary Performance





### References Cited

- Arruda, J.A. 2003. Final report: Remediation water quality survey of reclaimed abandoned mine land.
- Vickers, J. 1989. Vegetative analysis of the Monahan reclaimed mined land area.
   MS thesis, PSU, Pittsburg, Kansas.
- Yates, K. 1996. The Evaluation of two types of multivariate analyses applied to grassland veg. data from a reclaimed mine area in SE Kansas, USA. MS thesis, PSU, Pittsburg, Kansas.
- Imhoff, S. 1994. A post-reclamation water quality assess. of the Monahan Outdoor Ed. Ctr., MS thesis, PSU, Pittsburg, Kansas.
- USDA-SCS 1983. Reals reconstruction. Construction specifications. Soil Conservation Service, Kansas.
- McCart, S. 2019, Draft design drawings, KDHE PAD-0284, PAD KS-0009 and AMD Project, SCS Engineers, Overland Park, Kansas.

#### Acknowledgements

### Kansas Department of Health and Environment (KDHE), Surface Mining Unit

- Tyler Logan, Environmental Assoc.
- Michael Worsley, Environmental Spec.
- Luke Headings, Environmental Spec.
- Toni Anderson, Environmental Spec.
- Daniel Evilsizor, Environmental Spec.
- Sydney Hulvey (Intern)

### Office of Surface Mining Reclamation and Enforcement, Interior Regions 3, 4 and 6.

- Karly Ellis, AmeriCorps Member
- Riley Hickey, AmeriCorps Member.
- LaChelle Harris, AML & REG Program Specialist.
- Ethan Schuth, Hydrologist.
- Chike Etumudor, AML & REG Program Specialist.
- Kwang (Min) Kim, Chief Technical Services Branch.

#### Other Contributors:

Prof. Andrew (Andy) George, Ph.D., Dept. of Biology, Pittsburg State University (Site Caretaker).

SCS Engineers, Overland Park, Kansas:

Susan L. McCart, P.E., P.G., Project Manager.

Pat Goeke, Senior Remedial Engineer.

Dillon Baird, Design Engineer.

Shane Latimer, Toxicology Spec.



Investigation Acidic Discharges at the Monahan Abandoned Mine Lands Site, Kansas - The End

### **Questions?**







