Passive Treatment Systems on Life Support Pulling the Plug & Rebuilding

Case Study

Boise Idaho: June 4th-7th, 2023

By: Buck Neely, P.E.; Tim Danehy, QEP; Dan Guy P.G.;

Ryan Mahony, Logan Hauck, Cliff Denholm

Overview

ALIKKIK

- Background
 - Aging Population of Passive Treatment Systems
 - Site Examples
- System Diagnostics / Evaluation
- Design Considerations
 - System Evaluation (water quality & flow)
 - New Technologies
 - Select Treatment Components
 - Existing Footprint Constraints
- Limestone Recovery & Reuse Potential
- Highlight 3 Rebuild/design Case Studies

Background

- PTS Movement
 - Late 1990's & Early 2000's
 - Large fraction of 20 yr old systems - 'Geriatric'
- System Life Cycle
- Examples of Rebuilt Systems or Current Rebuild/design Projects
 - Puritan, Oven Run B, Richards,
 Ferris, SR114, SR81, Dream
 Mountain, Jennings, Maiden,
 Barkley Road, 3888, Big Run

Diagnostics

- Site Maintenance History / Logs
 - Type, Frequency, & Result
- System Diagnostics
 - Water Quality & Flow (In and Out)
 - Bypass / Overflow
- Visual Inspection of Treatment Media
 - Test Pits
 - (system necropsy)

Evaluation

- How is the System Performing?
 - Water Quality Effluent
 - pH, Alk vs Acid
 - Actual Flow vs Design Flow

- Any Structural Damage to Components
 - Pipes, Valves, Embankments, Spillways
- Time Between Major Maintenance Events

Should you pull the plug?

Design Considerations

- Inlet Water Quality & Quantity
 - Changes in Raw Water Quality?
 - Flow H Flumes

- New Technology Considerations
 - Treatment Tech (Solar Powered Flushing)
 - Remote Monitoring (Flow, pH, Water Levels)

- Treatment Component Selection
 - Not Always the Same as Existing

Design Considerations

- System Footprint
 - Space Constraints
 - Reconfigure, Expand, Combine, Add
 - Available Elevation
- Spent Media Placement / Disposal
 - Organics Spread Onsite & Revegetate
- Sludge Cells

Limestone Recovery & Reuse

- Site Specific
 - Potentially Thousands of Tons of Hi-Cal Limestone Already on Site
- Treatment Stone
 - Wash & Reuse (Wash ~\$5/Ton)
 - Flip Screen & Reuse (Flip Screen ~\$8/Ton)
- Recovery Rate
 - ~70% of Existing Stone (budget value)
 - Porosity & Fines

Component Acronyms

- Vertical Flow Reactor (VFR)
- Auto-Flushing Vertical Flow Pond (AFVFP)
- Settling Pond (SP)
- Jennings Vertical Flow Pond (JVFP)
- Wetland (WL)
- Successive Alkalinity-Producing System (SAPS)

Flow: Design ~300 gpm [Max 747 gpm | Avg 117 gpm]

pH: 2.5

Acid: 215 mg/L [Max 1,021 lb/d | Avg 166 lb/d]

TFe: 37 mg/L TAl: 17 mg/L TMn: 2 mg/L

Case Study #1: Richards

• Pre Rebuild

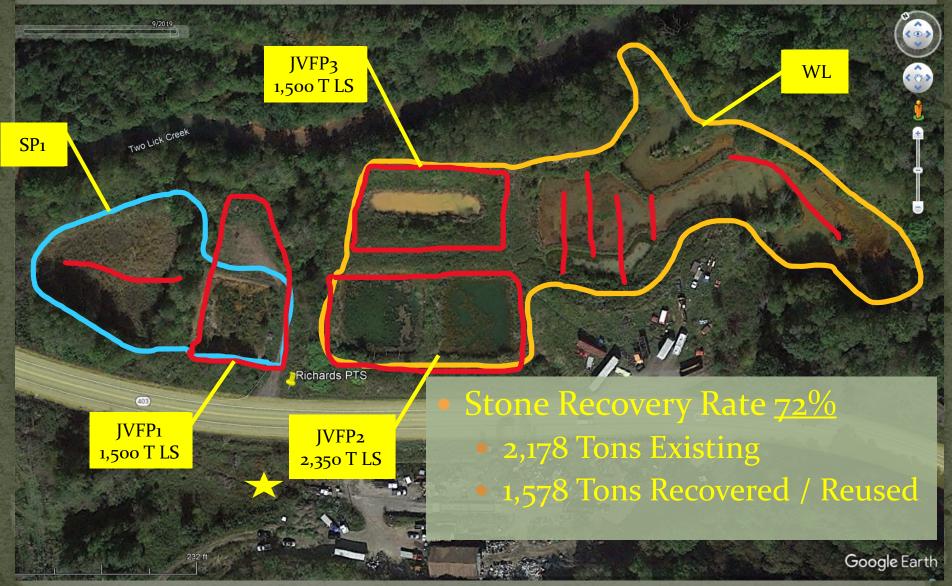
Phase 1 [1999] – VFR1 (Layered) to Polishing Pond

Phase 2 [2001] – Added VFR2A & VFR2B (Layered), Sludge Pond,

Wetland, & Collection System

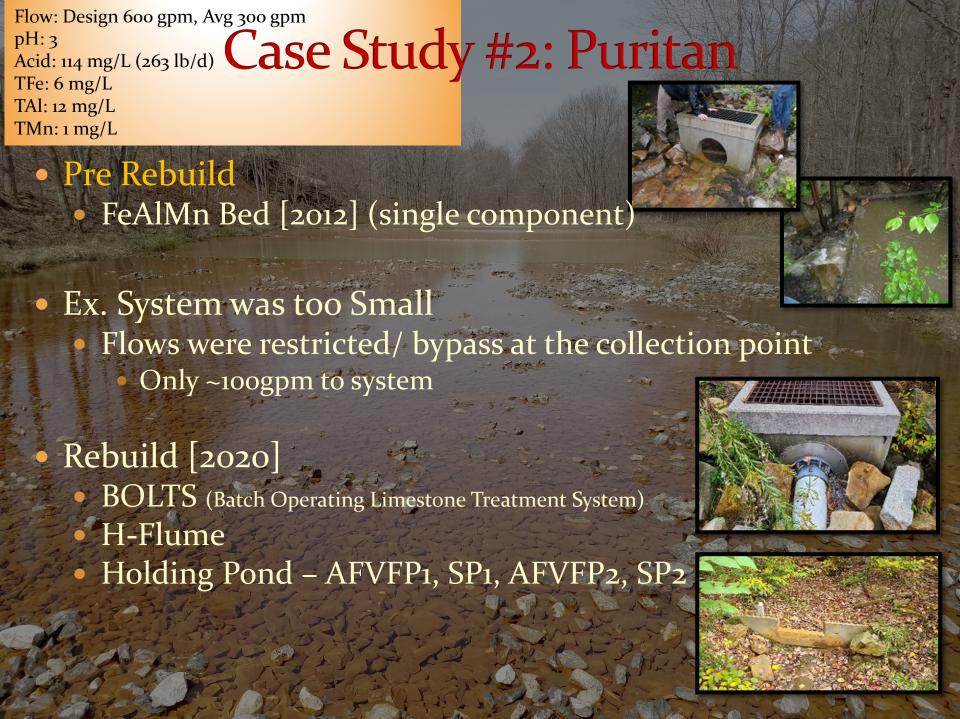
Maintenance History

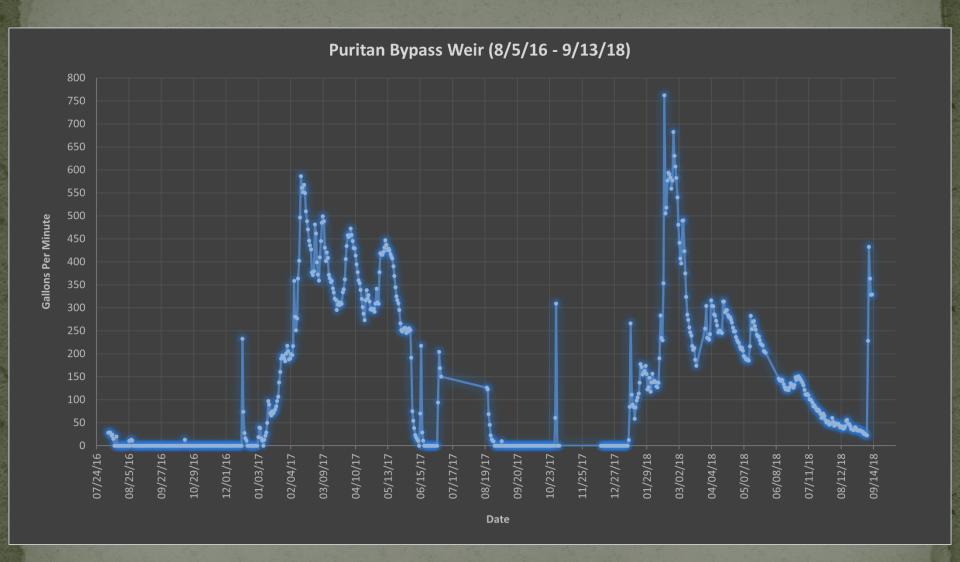
- Flow bypassing [2015]
- Stir / Fluff Organics [2017]
- Pulled the plug [2018]



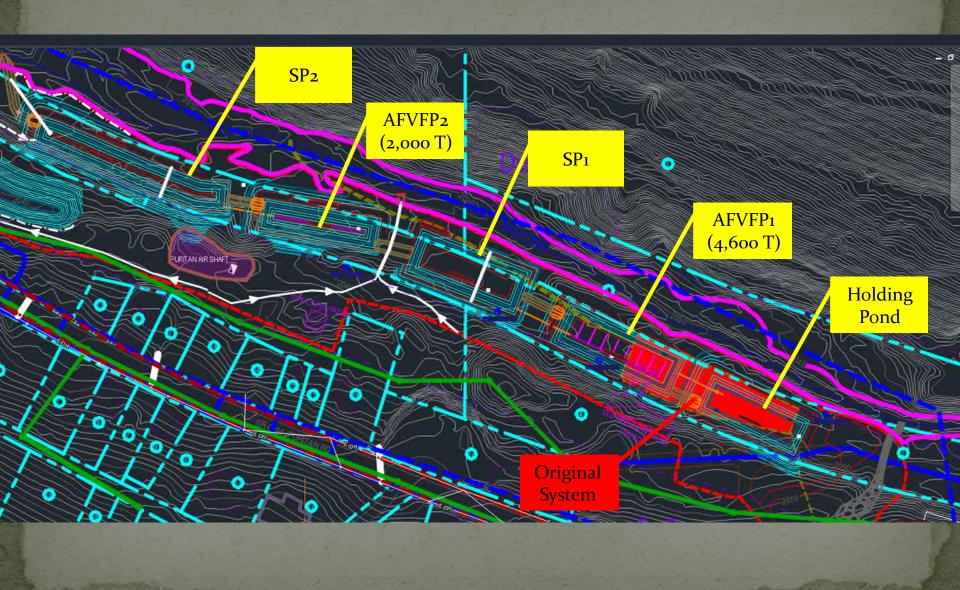
Rebuild [2020]

- Reconfigure Collection (3-way flow splitter)
 - Capture upwelling in channel route to WL
- Expand system to have 3 Larger JVFPs (Mixed Media)
- Improve both wetlands (directional barriers)


Case Study #1: Richards


Case Study #1: Richards

- 3 Way Flow Splitter
 - 1 Water Level Reading (Staff Gauge)
 - 28% 28% 44[%]
 - 74° V Notch (x2) & 90° V Notch (x1)



Case Study #2: Puritan

- Graph Depicts Daily Avg Overflow to Trout Run
- Max Recorded Flow 1,599 gpm

Case Study #2: Puritan

Case Study #2: Puritan

- Stone Recovery & Reuse
 - Reused 2,907T / Purchased 3,693T
- Stone Recovery Rate <u>71%</u>
 - 4,087 Tons Existing
 - 2,907 Tons Recovered / Reused
- Utilize Solar Power & Master/Slave Radio
 Communication for Controls
 - (Stand Alone Units No Telemetry Currently Used)

Is It Really Broken?

Site	Date	Point	Flow gpm	pН	Acid mg/L	Fe mg/L	Mn mg/L	Al mg/L	Acid Load
Puritan	9/15/20	Raw	97	3.5	81	16	1	4	94
	9/15/20	Treated	97	8.1	-100	<1	<1	<1	-116
	05/18/23	Raw	260	3.0	520	27	2	19	1,625
	05/18/23	Treated	260	4.5	260	7	2	13	814

Current Acid Load Reduction = 811 lb/d Design Acid Load Reduction = 822 lb/d

- System is Performing at Design Acid Load Capacity
- Max Acid Concentration | Load prior to system construction was (150 mg/L | 234lb/d)

Flow: Design 367 gpm, Avg 158 gpm

pH: 2.8

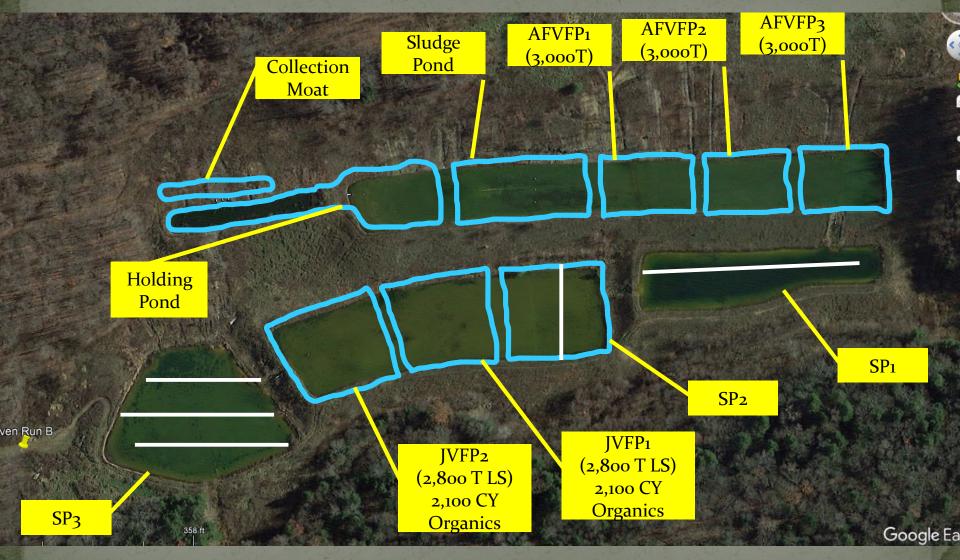
Acid: 320 mg/L [Max 2,467 lb/d | Avg 533 lb/d]

TFe: 28 mg/L TAl: 25 mg/L TMn: 11 mg/L

Case Study #3: Oven Run B

- Pre Rebuild [1999]
 - Collection Pond SAPS1 SP1 SAPS2 SP2
- Rarity = Failure From Being too LARGE
 - Surface Areas: SAPS1 = 1.98 AcSAPS2 = 1.85 Ac
- Rebuild [2022]
 - Collection Moat H Flume Holding Pond Sludge
 Pond 3 AFVFPs SP1 SP2 JVFP1 JVFP2 SP3

Case Study #3: Oven Run B


- 3 Staggered AFVFPs (Parallel)
 - 3,000 Tons LS Each
 - Adjustable Hold times (12-hour)
 - Fill on 8hr Staggered Offset
- 2 JVFPs (Parallel)
 - 2,800 Tons LS Each

- Stone Recovery Rate <u>82%</u>
 - 19,886 Tons Existing
 - 16,257 Tons Recovered
 Reused

Case Study #3: Oven Run B

Redesigned Site Configuration (14,600 Ton LS)

The Results of Rebuilding

Site	Point	Flow gpm	pН	Acid mg/L	Fe mg/L	Mn mg/L	Al mg/L	Acid Load ^{Ib/d}
Oven Run B	Raw	315	2.9	582	21	8	21	2,160
	Treated	315	6.8	- 53	<1	2	<1	-294
Puritan	Raw	97	3.5	81	16	1	4	94
	Treated	97	8.1	-100	<1	<1	<1	-116
Richards	Raw	143	3.2	158	18	2	16	272
	Treated	143	6.9	-96	9*	2	<1	-165

Oven Run B 5/11/23, Puritan 9/15/20, Richards 12/17/21 *Fe contribution from post VFP1/2 source

Conclusions

- Monitoring or Snap-Shots of systems throughout the design life helps aid in end-of-life decisions
- Pulling the Plug for Redesign
 - Knowing When to Make the Call
 - Maximize existing resources
 - Timing Grant Funding etc
 - Redesign to Improve
 - Performance (Change) Maintenance Monitoring
- Limestone Reuse & Recovery
 - Recovery Rate 70%
 - Porosity Void Volumes

Questions

Thank You & Acknowledgements

PA DEP BAMR

Trout Run Watershed Association (Dennis Beck)

Blacklick Creek Watershed Association (Dennis Remy)

Stream Restoration Incorporated

Earth Shapers, LLC (Contractor)

BioMost, Inc.

Stonycreek-Conemaugh River Improvement Project (SCRIP)

Somerset County Conservancy

Iron Horse Salvage

Landowners