

USDA

Opportunities for Biochar to Remediate Forest Soils in Abandoned Mine Lands

Derek Pierson, Research Soil Scientist USFS Rocky Mountain Research Station

US Forest Service Research Team

Derek Pierson - Soil Science Derek.Pierson@usda.gov

Travis Whitman - Geology Crista O'Conner - Botany

Boise National Forest

Joanne Tirocke - Soil Science Carlos Rodriguez-Franco - Forestry Debbie Dumroese - Soil Science

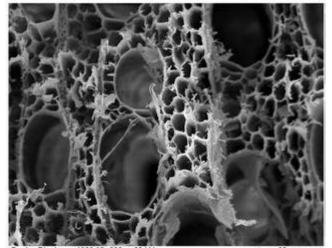
Abandoned Mine Lands (AMLs)

> Sparse vegetation

Poor soil structure

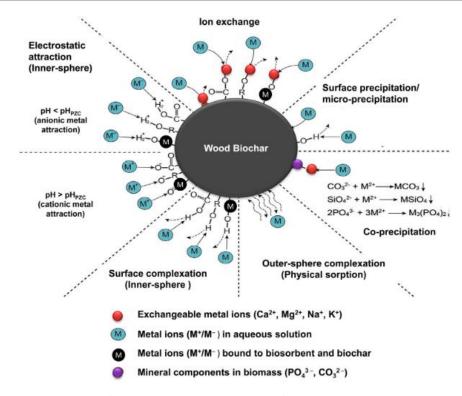
> Acidic soils

> Heavy metal contamination



A charcoal-like substance that's made by burning organic material in a low oxygen environment (i.e., pyrolysis)

Biochar Properties


- 1) Biochar is porous... extremely high surface area, >4000 ha per cubic meter
- 2) Forged in fire \rightarrow Non-specific binding capacity
- 3) Adsorption mechanisms:
 - Surface sorption
 - Electrostatic interaction
 - Cation/ion exchange capacity
 - Precipitation
 - Complexation

Poplar-Biochar, ~1000 °C, 500 x, 20 kV i---- 50 μm -----

Microscopic structure of biochar made from poplar wood chips

Biochar-Fungi Interactions in Soils Katja Wiedner & Bruno Glaser *Biochar and Soil Biota* (2013)

Schematic diagram of various sorption mechanisms of heavy metals by biochar in water (Shaheen et al 2019)

BIOCHAR PRODUCTION

Turning waste biomass into a climate smart product

Photo credit Nathanael Johnson

Forests "piling up" with low-value wood stock

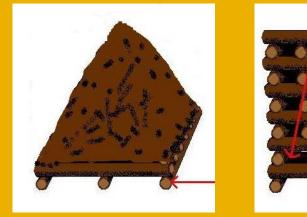
- From harvest, fuel treatments, rehabilitation & construction projects etc.
- Estimated 368 million dry tons of forest slash can be produced each year in the US (Bufford & Neary, 2010)

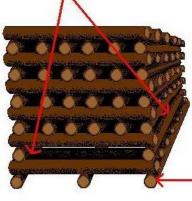
<u>Current Practice:</u> Pile Burning

Slash piles are burned for disposal

Negatives:

- > Air quality impact
- ➢ Fire risk
- Loss of soil OM
- Nutrient volatilization
- Legacy of burn scars
- Few trees or shrubs
- Invasive species




Let's Make Biochar

- Intentionally built slash piles
- Kilns in a variety of sizes
- Air curtain burners

Hand-built piles

Protect the ground and restrict airflow

Credit: Jim Archuleta

Charboss by AirBurner[©]

Carbonator by TigerCat[©]

BENEFITS

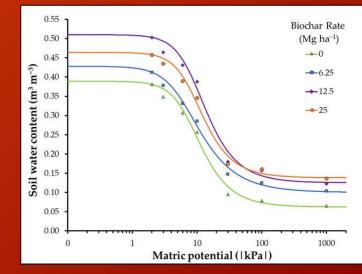
of using biochar as a soil amendment...

-

Soil Moisture Retention

Biochar can:

- Decrease overland flow
- Increase infiltration



Biochar increased available water:

- 38%: coarse-textured soil
- 19%: medium-textured soil
- 16%: fine-textured soil

Data from: Blanco-Canqui, 2017; Edeh et al., 2020; Razzaghi et al. 2020

Lustosa Carvalho, Martha, et al. 2020

Heavy metal immobilization

Relative to other methods of heavy metal remediation, biochar application is:

- Economically practical
- Environmentally friendly
- Fast application and effects

Gholizadeh, Mortaza, and Xun Hu. "Removal of heavy metals from soil with biochar composite: A critical review of the mechanism." *Journal of Environmental Chemical Engineering* 9.5 (2021): 105830.

Journal of Environmental Chemical Engineering Volume 9, Issue 5, October 2021, 105830

Removal of heavy metals from soil with biochar composite: A critical review of the mechanism

Mortaza Gholizadeh ^b 🙁 🖾 , Xun Hu ^a 🝳 🖾

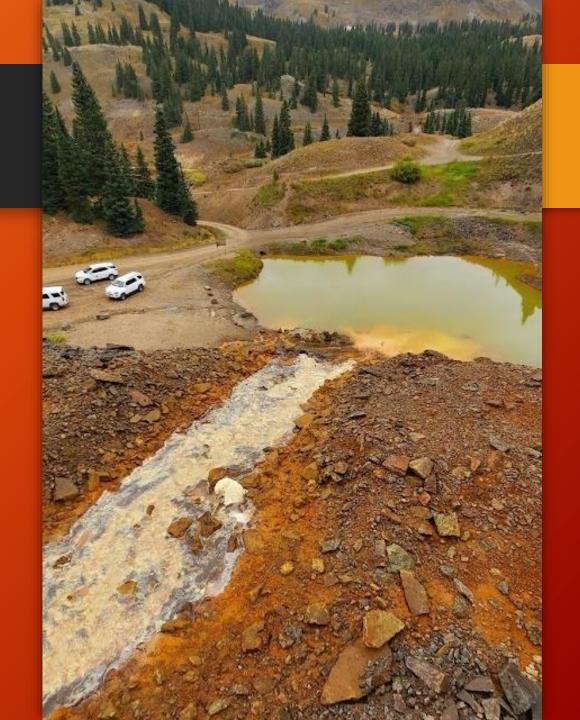
Show more 🥆

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.jece.2021.105830 7

Get rights and content 🛪

Highlights


- This study reviewed the different methods for removal of heavy metals from soil.
- Physical method is not economically practical due to high amount of obtained waste.
- Chemical method is expensive and creates new contamination.
- Biological and phytoremediation methods require long time to remove heavy metals.
- Use of biochar composite is the most feasible way to remove heavy metals from soil.

Neutralizing acidity

Oxidation of sulfide minerals exposed by mining activities increases soil and runoff acidity

Biochar acid neutralizing capacity is ~3x higher than peat

Biochar can help establish vegetation, jumpstarting biologic remediation

Carbon Sequestration: Biochar turnover time is relatively slow

~ 1 year

10-100 yr

75-200 yr

300-1000+ yr

¹⁴C mean residence times

Skepticism

2000-2015 Black gold rush for biochar research

Generally poor clarification that:

- > Biochar types differ
- Site disturbances differ
- > Application methods differ

...Field trials...effects vary...
"BIOCHAR DOESN'T WORK"

"Whost-Satel-expect-Brochaddingbiochar here?"

Soil Gradient

5 0.15 0.25 0.35 0.45 0.55 0.65

Biochar + Historic placer tailings

- Dredging in historic mining districts confined stream channels and filled in riparian areas with river rock (placer tailings)
 - Biochar amendment study:
 Establish native vegetation
 Jumpstart soil development
 Low cost and quick to apply

Photo credit: Leo Geis

Low cost, low risk biochar applications Remediation and seeding of the Missouri Mine CERCLA site in central Idaho.

In collaboration with the Boise National Forest & Boise State University

RMRS

Questions welcome, or via email

Derek Pierson - Soil Science Derek.Pierson@usda.gov

Travis Whitman - Geology
Crista O'Conner - BotanyBoise
National
ForestJoanne Tirocke - Soil ScienceCarlos Rodriguez-Franco - Forestry
Debbie Dumroese - Soil Science

