MICROBES IN MINE RECLAMATION: BIOECOLOGY, BIOFERTILIZERS, BIOECONOMY

D DAY, 2023 | PRESENTED TO AMERICAN SOCIETY OF RECLAMATION SCIENCES

BIOECOLOGY

PHYTOSTABILISATION

Huang et al (2014) Life-Of-Mine Conference, Brisbane, QLD pp 663 - 674

BIOECOLOGY

SUCCESSION

Carrenho et al. (2021), IN Bio-Geotechnologies for Mine Site Rehabilitation pp 261 - 279

BIOECOLOGY

SOIL FOOD WEB

- Decomposers
- Symbiotic Fungi
- Predators
- Soil Formation and Nutrient Cycling
- Plant-Microbe Interactions
- Soil Structure Formation
- Organic Matter Decomposition
- Bioremediation

BIOECOLOGY

Soil Food Web (2021)

SFW/SUCCESSION INTEGRATION

Harris, J. (2003). European Journal of Soil Science, 54, 801-808

SWCA

BIOECOLOGY

BIOFERTILIZERS

- Microbial Inoculants to enhance soil fertility
 - Fix Atmospheric N
 - Solubilize P
 - Produce Growth Producing Hormones
 - Biostimulants e.g. humic acids
 - Mycorrhizal fungi

BIOFERTILIZERS | SWCA

BIOFERTILIZERS | SWCA

Parameter	Units	DTA1-2	DTA3
pН	S.U.	3.5	5.5
Organic Matter	%	2.1	0.9
Organic Carbon	%	1.2	0.5
Nitrate	mg/kg	1.6	1.8
Phosphate	mg/kg	0.1	0.2
Potassium	mg/kg	5.3	6.8
Calcium	mg/kg	60	179
Magnesium	mg/kg	13	14
Zinc	mg/kg	15	19
Manganese	mg/kg	26	49
Copper	mg/kg	20	8.3
Iron	mg/kg	211	66
Boron	mg/kg	0.25	0.10
Sulfate	mg/kg	230	237

Amendment	Rate
Lime	40ton/acre
Biochar	5 tone/acre
Wood Straw/Straw	Crimped to Cover
Richlawn 3-6-3	1.3 ton/acre
Total Nitrogen	3.0%
Water Insoluble Organic Nitrogen	2.9%
Water Soluble Organic Nitrogen	0.1%
Available Phosphate	6.0%
Soluble Potash	3.0%
Calcium	11.0%
Humates	15.0%
Endo Mycorrhizae	
Glomus mosseae	7,500 Propagules
Glomus entunicatum	7,500 Propagules
Glomus intradices	7,500 Propagules
Glomus aggregatum	7,500 Propagules

CHEMISTRY SWCA

CHEMISTRY SWCA

Diamaga		DTA-3			DTA-1/DTA-2	Forest Soil
BIOMASS	Units	W01 0-3	W01 3-6	W02 0-6	W04 0-6	W03 0-6
		Beneficial	Microorgar	isms		
Bacterial Biomass	µg/g	101	626	751	816	945
Actinobacterial Biomass	µg/g	6	23	0	0	0
Fungal Biomass	µg/g	0	0	0	0	0
Fungal:Bacteria	Ratio	0	0	0	0	0
Total Beneficial Protozoa	number/g	34,646	207,876	586,944	2,425,220	762,212
Flagellates	number/g	34,646	207,876	586,944	2,425,220	762,212
Amoebae	number/g	0	0	0	0	0
Bacterial-feeding						
Nematodes	number/g	0	0	0	0	0
Fungal-feeding Nematodes	number/g	0	0	0	0	0
Predatory Nematodes	number/g	0	0	0	0	0
Detrimental Microorganisms						
Oomycetes Biomass	µg/g	0	0	0	0	0
Ciliates	number/g	0	0	0	0	69,292
Root-feeding Nematodes	number/g	0	0	0	0	0

SOIL MICROBIAL BIOMASS

Species Units			DTA-3	DTA-1/DTA-2	Forest Soil	
Species	Units	W01 0-3	W01 3-6	W02 0-6	W04 0-6	W03 0-6
Total Bacteria	gene units/g	1E+09	1E+09	1E+09	1E+10	1E+09
Total Fungi	gene units/g	1E+08	1E+07	1E+08	1E+09	1E+08
Fungi:Bacteria	Ratio	0.06	0.03	0.05	0.11	0.09
Arbuscular:Ectomycorrhizal	Ratio	Ectomycorrhizal Only				

MICROBIAL BIOMASS

Soil Quality

	DTA-3			DTA-1/DTA- 2	Forest Soil
	W01 0-3	W01 3-6	W02 0-6	W04 0-6	W03 0-6
Soil Quality Value	Medium	Medium	Low	Medium	Low
Biodiversity	Low	Very Low	Very Low	Very Low	Very Low
Functionality	Medium	High	Medium	Medium	Very Low
Resistance	Medium	Low	Very Low	Very High	High

Soil	Health	

		DTA-3	DTA-1/DTA-2	Forest Soil	
	W01 0-3	W01 3-6	W02 0-6	W04 0-6	W03 0-6
Soil Health Index	Medium	Medium	Medium	Medium	Medium
Hormone Production	High	High	Very High	High	Very Low
Stress Adaption	Medium	High	Very High	High	Very Low

SOIL QUALITY AND HEALTH

	DTA-3			DTA-1/DTA-2	Forest Soil
	W01 0-3	W01 3-6	W02 0-6	W04 0-6	W03 0-6
C Nutritional Status	Medium	Medium	Medium	High	Very High
N Nutritional Status	High	Very Low	Very Low	Low	Very Low
P Nutritional Status	Medium	High	High	High	Very High
K Nutritional Status	High	High	High	High	Very High
Fe Assimilation	Low	High	Very High	Medium	Very Low
Zn Transport Assimilation	High	Low	Low	Very Low	Very Low
Mn Transport Equilibration	High	Medium	Very Low	Medium	Very Low
S Cycle Equilibrium	Medium	High	High	Very Low	Low
Ca Transport	High	Low	Low	Very Low	Very Low
Cu Export	Low	High	Very High	Low	Very Low
Mg Transport	Low	High	High	Medium	Medium
Cl Transport	Low	Low	Low	Medium	Medium

BIOECONOMY

An economy based on the sustainable and circular use of biological resources and processes to produce food, feed, bio-based products and services.

Untapped potential to support both climate change mitigation and adaptation.

Approx 1/3 of global greenhouse gas (GHG) emissions currently come from agrifood systems

Offers opportunities to reduce GHG emissions along the agrifood system replacing fossil-based resources and processes with biological ones, including the adoption of biofertilizers.

Resource-efficient circular bioeconomy projected to reach a value of \$US 7.7 trillion in 2030

IPCC MITIGATION OPTIONS AND CORRESPONDING BIOECONOMY INNOVATIONS

Macrosectors	IPCC Mitigation Options	Bioeconomy Innovation
Primary Production	Shift to balanced, sustainable healthy diets	New food sources, biofortification
	Carbon sequestration in agriculture	Microbiome innovations
	Reduce methane and nitrous oxide emissions	Biofertilizers and Biomineral fertilizers
Circularity and by-product use	Ecosystem restoration, afforestation,	Carbon and climate focused strategies
	Enhance recycling	Circular use of bioresources
	Reduce food loss and waste	Closed nutrient loops generating added value from waste and surplus materials.
Bio-based industries	Enhance use of wood products	Enhance use of wood products
	Feedstock decarbonization, process change	Natural organisms and enzymes in food production and processing
	Fuel Switching (Bioenergy)	Sustainable bioenergy from waste

INTEGRATION WITH SDGS

Facilitate conservation and restoration of ecosystems contributing to the achievement of SDGs 13 (Climate action), 14 (Life below water) and 15 (Life on land).

Promotion and implementation of practices, techniques and technology that preserves natural resources and biodiversity for food and livelihoods security (SDG 2: Zero hunger), provisioning clean water and air (SDG 6: Clean water and sanitation).

Recognizing the value of traditional and local practices thereby dignifying the work of smallholder farmers and reducing inequalities along the agrifood system (SDGs 5: Gender Equality and 10: Reduced Inequalities) and poverty (SDG 1: No poverty).

Steady supply of diversified and balanced diets, which is crucial for achieving SDG 3 (good health and well-being)

Apply at the landscape level, implying that enhanced local community partnerships, as outlined in SDG 17 (Partnerships for Goals)

SUSTAINABLE DEVELOPMENT GOALS

BIOMINERAL FERTILIZER PRODUCTION

BIOMINERAL FERTILIZERS

BIOMINERAL FERTILIZER PRODUCTION

SWCA

BIOMINERAL FERTILIZERS

BIOMINERAL FERTILIZER PRODUCTION

BIOMINERAL FERTILIZERS | SWCA

CHALLENGES AND LIMITATIONS

- Limited knowledge and research in reclamation settings
- Long-term Monitoring
- Regulatory Considerations
- Public Perceptions

CHALLENGES AND LIMITATIONS SWCA

FUTURE DIRECTION AND OPPORTUNITIES

- Building knowledge base
- Best practices
- Targeted species for reclamation
- Designing microbial based soil amendments
- Genetic engineering
- Bioleaching
- Bioremediation
- Phytoremediation

Sound Science. Creative Solutions.®

Andrew Harley andrew.harley@swca.com 720.840.4703