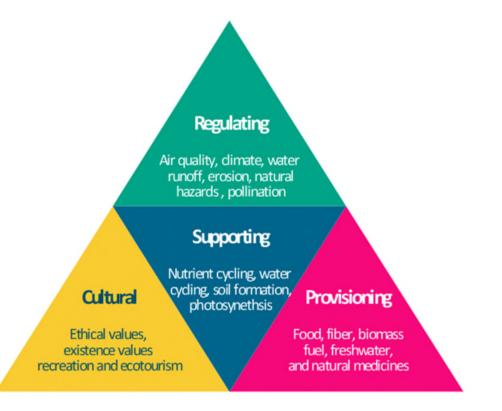
# ECELOSICAL SOLUTIONS

# Ecological Restoration for Insect Conservation within Natural Gas Fields




Michael Curran, PhD, CERP

Josh Sorenson, Tim Robinson, Taylor Crow, Zoe Craft, Bee Bott



# **Ecosystem Services**

- Provisioning Services
  - Food, raw materials, fresh water, medicinal resources
- Regulating Services
  - Local climate and air quality, carbon sequestration and storage, moderation of extreme events, waste-water treatment, erosion control/soil fertility, pollination, biological control
- Habitat or Supporting Services
  - Habitat for species (food, shelter, water), maintenance of genetic diversity (high species diversity often means high genetic diversity), nutrient cycling
- Cultural Services
  - Recreation (mental & physical health), tourism, aesthetic appreciation and inspiration for culture, art, and design, spiritual experience



www.teebweb.org

"If you have a backyard, this book is for you." -Richard Louv, author of Last Child in the Woods

# Bringing Nature Home

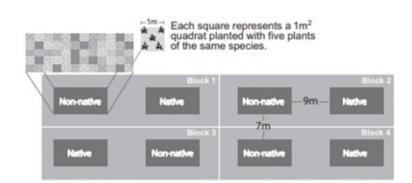
UPDATED AND EXPANDED

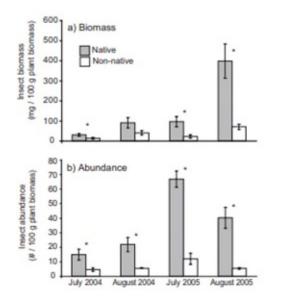
### How You Can Sustain Wildlife with Native Plants

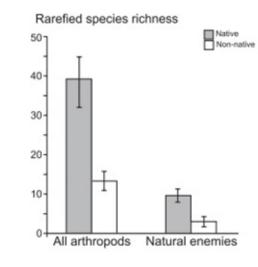
Douglas W. Tallamy With a Foreword by Rick Darke

|                                                                                                                                                                          | Douglas W. Tallamy                                                                           | C        | Follow | Cited by                                           |                  | VIEW ALL                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------|--------|----------------------------------------------------|------------------|-------------------------|
|                                                                                                                                                                          | Professor of Entomology and Wildlife Ecology<br>Verified email at udel.edu - <u>Homepage</u> |          |        |                                                    | All              | Since 2017              |
| 8                                                                                                                                                                        | insect ecology                                                                               |          |        | Citations<br>h-index<br>i10-index                  | 6517<br>43<br>88 | 2202<br>24<br>50        |
| TITLE                                                                                                                                                                    |                                                                                              | CITED BY | YEAR   |                                                    |                  | 440                     |
| Impact of native plants on bird and butterfly biodiversity in suburban landscapes<br>KT Burghardt, DW Tallamy, W Gregory Shriver<br>Conservation biology 23 (1), 219-224 |                                                                                              | 436      | 2009   | uh                                                 |                  |                         |
| Convergence patterns in subsocial insects<br>DW Tallamy, TK Wood<br>Annual review of entomology 31 (1), 369-390                                                          |                                                                                              |          | 1986   |                                                    |                  | - 110                   |
| Phytochemical in<br>DW Tellamy, MJ Rau                                                                                                                                   | pp                                                                                           | 325      | 1991   | 2015 2016 2017 2018 2                              | 019 2020 2       | 021 2022                |
| Do alien plants re<br>DW Tallamy<br>Conservation biology                                                                                                                 | duce insect biomass?<br>18 (6), 1689-1692                                                    | 288      | 2004   | Public access                                      |                  | VIEW ALL                |
| Ranking lepidopte<br>DW Tallamy, KJ Shro<br>Conservation Biology                                                                                                         |                                                                                              | 218      | 2009   | 1 article<br>not available<br>Based on funding man | dates            | 8 articles<br>available |
| Bringing nature h<br>DW Tallamy                                                                                                                                          | ome: how you can sustain wildlife with native plants, updated and expanded                   | 179      | 2009   |                                                    |                  |                         |

#### JOURNAL ARTICLE


### Reproductive Success of Chestnut-Collared Longspurs in Native and Exotic Grassland @

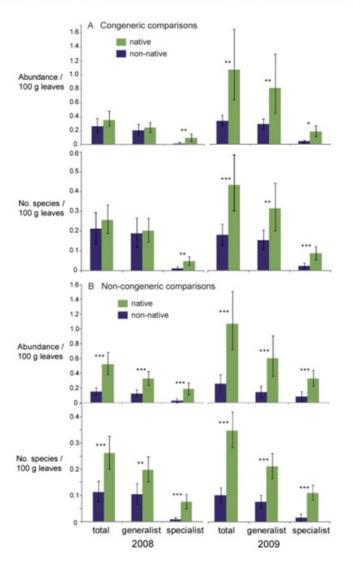

John D. Lloyd, Thomas E. Martin Author Notes


The Condor, Volume 107, Issue 2, 1 May 2005, Pages 363–374, https://doi.org/10.1093/condor/107.2.363 Published: 01 May 2005 Article history ▼ COMMUNITY AND ECOSYSTEM ECOLOGY

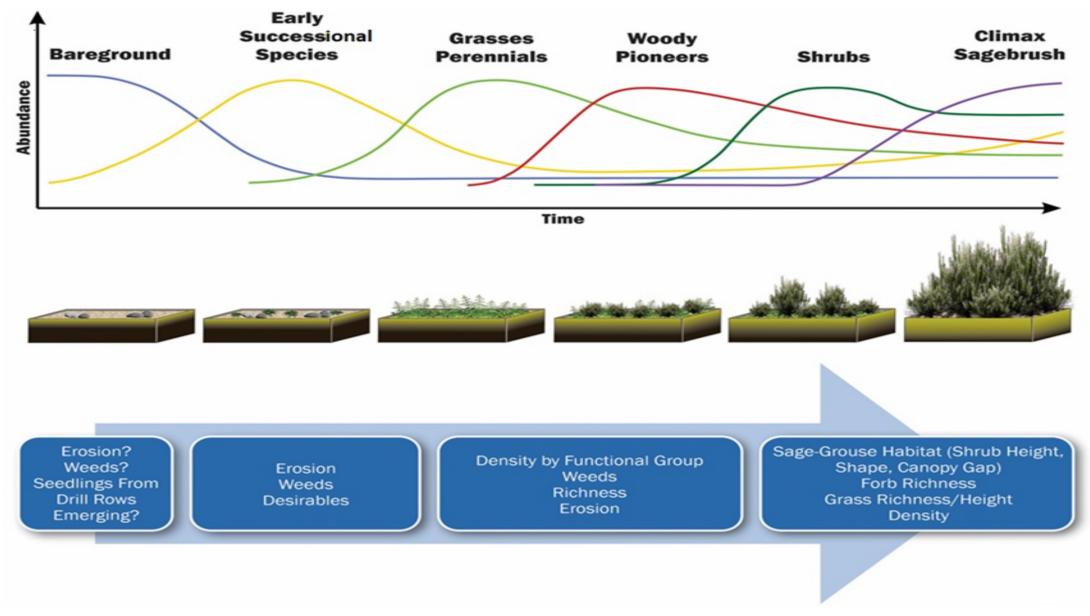
#### Arthropod Communities on Native and Nonnative Early Successional Plants

MEG BALLARD,<sup>1</sup> JUDITH HOUGH-GOLDSTEIN,<sup>1,2</sup> and DOUGLAS TALLAMY<sup>1</sup>









### Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities

KARIN T. BURGHARDT,<sup>1,†</sup> DOUGLAS W. TALLAMY, CHRISTOPHER PHILIPS,<sup>2</sup> AND KIMBERLEY J. SHROPSHIRE

Entomology and Wildlife Ecology Department, University of Delaware, Newark, Delaware 19716 USA



### Restoration as Assisted Succession – Western US



# Why Insects?

- Insects are the most diverse and abundant animals on Earth
- Insects are wildlife
- Insects provide more ecosystem services than other animals
  - Pollination services
  - Food sources for higher trophic levels
    - ~96% of terrestrial birds rear their young solely or primarily on insects
  - Nutrient Cycling
  - Biological Control
  - Genetic Diversity
- Insects can be used as indicators of a functional ecosystem



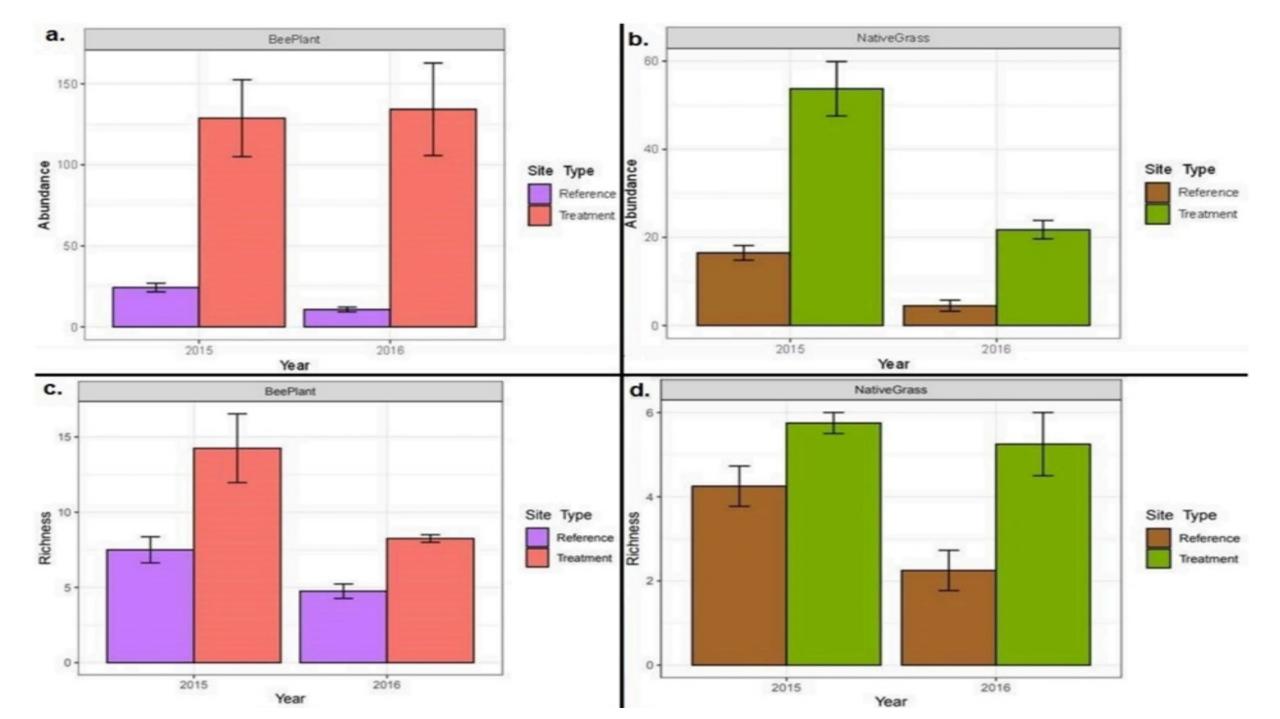
## Information about Insects from previous literature

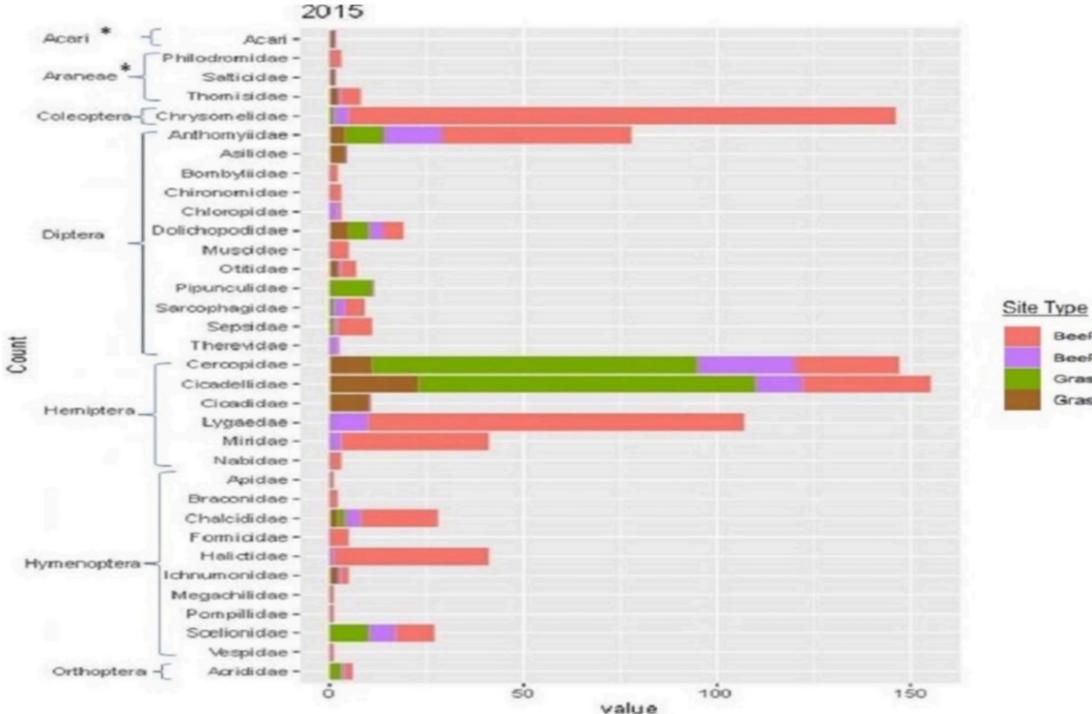
- Plant-vigor hypothesis (Price 1991)
- Mass-flowering hypothesis (Westphal et al. 2003)
- Many insects avoid terpenoids (produced by old sagebrush) and very few insect families eat wood
- Not much is known about wild pollinators in rangelands (Harmon 2011)
  - Estimated >75% of plants require or benefit from insect pollinators in rangelands



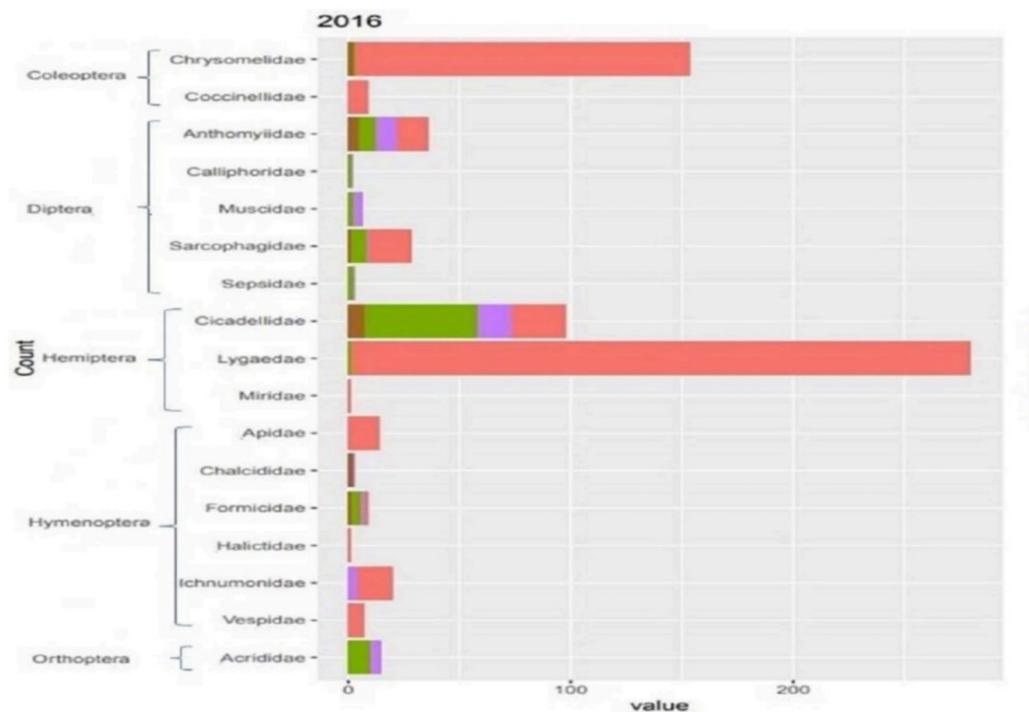
Article

#### Insect Abundance and Diversity Respond Favorably to Vegetation Communities on Interim Reclamation Sites in a Semi-Arid Natural Gas Field


Michael F. Curran <sup>1,2,3,\*</sup>, Timothy J. Robinson <sup>4</sup>, Pete Guernsey <sup>5</sup>, Joshua Sorenson <sup>6</sup>, Taylor M. Crow <sup>7</sup>, Douglas I. Smith <sup>1</sup> and Peter D. Stahl <sup>1,2,3</sup>


 First year reclamation seeded with native, annual forb Rocky Mountain bee plant (and other native species)




 2-3 year old reclamation seeded predominantly with native, perennial grass species







BeePlant Treatment BeePlant Reference Grass Treatment Grass Reference

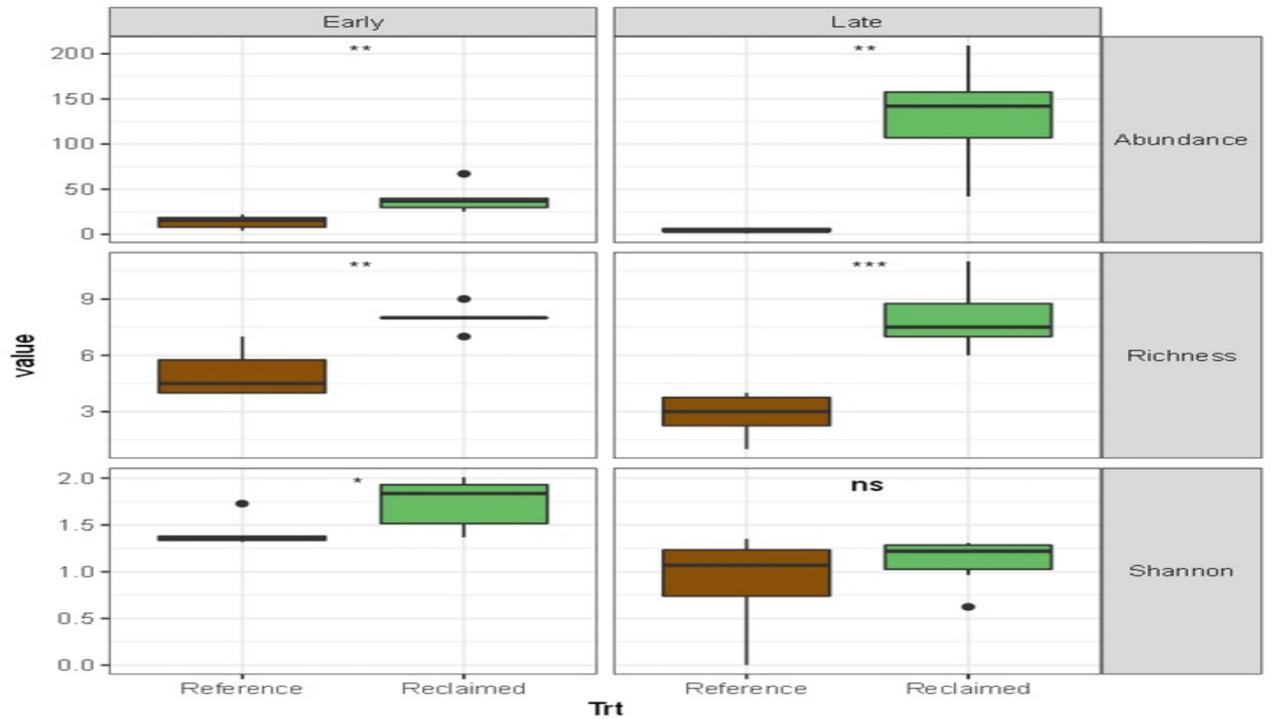


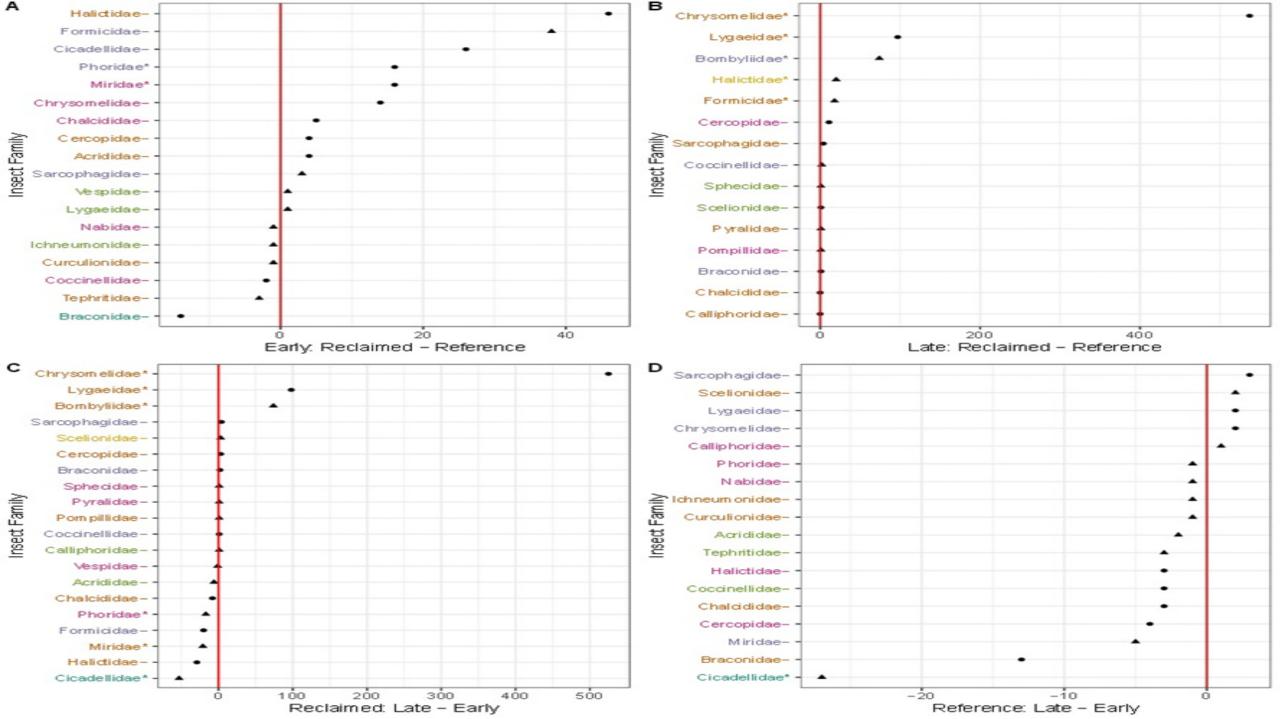
Site Type

BeePlant Treatment BeePlant Reference Grass Treatment Grass Reference

# Conclusions of Study

- More insects on reclaimed sites
- Reclaimed sites with flowering plants contained more insects than reclaimed sites with only grass
  - 12x more pollinators
- More insects in reference areas adjacent to reclaimed sites with flowers than sites with grass
- Limited to late growing season




### Follow-up Study

- Jonah Field
- Early season vs. late season blooming flowers
  - Early season mainly yarrow, blue flax, penstemon species
  - Late season mainly Rocky Mountain bee plant
- Do early season reclamation sites with flowering plants contain more insects than reference areas?
- Do late season reclamation sites with flowering plants contain more insects than reference areas?





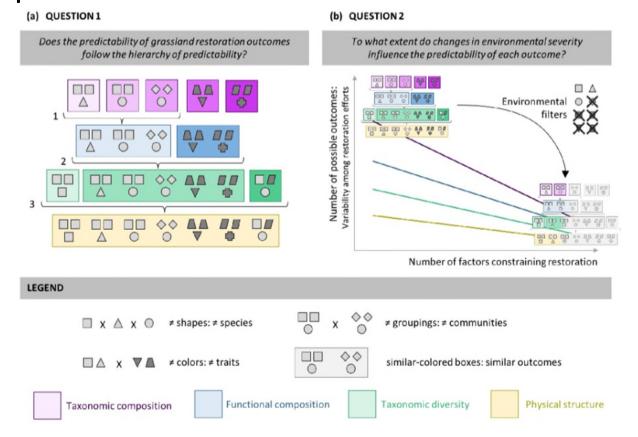






# Conclusions

- Early season reclamation sites contained 2.82x more insects than reference areas
- Late season reclamation sites contained 21.45x more insects than reference areas
- More insect abundance in late season, though insect diversity was comparable across study times


# Take Home Message & Implications

- Insects respond favorably to reclamation efforts when:
  - Native plants become established
  - Native flowering plants are abundant
- Utilizing diverse seed mixes, especially those which contain flowering plants blooming throughout the growing season, not only has potential to improve vegetation diversity, but also has positive benefits on insect/pollinator diversity and it is likely to benefit higher trophic levels
  - 96% of terrestrial birds rear their young solely or primarily on insect protein
  - Insects beneficial to other wildlife
  - Establishing plant-pollinator interactions is of utmost important to reclamation and likely can benefit surrounding areas
- ESG calls for diversity
  - Insects, the most abundant and diverse animals on Earth, are a low-hanging fruit



# Next Steps

### Can we use this data to improve reclamation practices for endangered species and wildlife?



Bertuol-Garcia, Ladoucuer, Brudvig, Laughlin, Munson, Davies, Svejcar, Shackelford – Testing the hierarchy of predictability in grassland restoration across a gradient of environmental severity

### Sage-grouse Diet

Survival of greater sage-grouse chicks and broods in the northern Great Basin MA Gregg, JA Crawford - The Journal of Wildlife Management, 2009 - Wiley Online Library ... insect abundance could affect survival because they are the primary foods of sage-grouse ... , growth, and development (Klebenow and Gray 1968, Peterson 1970, Johnson and Boyce ... ☆ Save 切 Cite Cited by 109 Related articles All 8 versions

#### Long-term effects of fire on sage grouse habitat

PJ Nelle, <u>KP Reese</u>, JW Connelly - 2000 - repository.arizona.edu ... Brood-rearing habitat must provide forbs and **insects** for food. Total ... the **diet** of sage **grouse** chicks (Patterson 1952, **Klebenow** and **Gray** 1968, Peterson 1970), and the amount of **insects** ... ☆ Save 55 Cite Cited by 145 Related articles All 5 versions ≫

Sagebrush, greater sage-grouse, and the occurrence and importance of forbs VE Pennington, <u>DR Schlaepfer</u>, <u>JL Beck</u>... - Western North American ..., 2016 - BioOne ... their importance to Greater Sage-**Grouse diets** and habitats, how ... and summer, Greater Sage-**Grouse diets** consist of forbs (... **Feeding** trials with **insects** in the **diet** of sage **grouse** chicks. ...

#### Goooooooogle >

**1** 2 3 4 5 6 7 8 9 10 Next

#### [PDF] Food habits of juvenile sage grouse.

DA Klebenow, GM Gray - Rangeland Ecology & ..., 1968 - journals uair arizona.edu ... Only during the first week of a sage grouse's life did insects predominate in the diet. After .... sage grouse indicated that ants and forbs were the chief foods for the first six weeks (Batterson ... & Save 39 Cite. Cited by 179. Related articles. All 4 versions 30

#### Feeding trials with insects in the diet of sage grouse chicks

GD Johnson, <u>MS Boyce</u> - The Journal of Wildlife Management, 1990 - JSTOR ... Our objective was to determine the effects of eliminating **insects** in the **diet** of captive sage **grouse**... We thank ES Williams for necropsies of sage **grouse** and for suggestions. ME Johnson ... ☆ Save 39 Cite Cited by 220 Related articles All 4 versions

#### (Poe) An investigation on fire effects within xeric sage grouse brood habitat. RA Fischer, KP Ress... - Rangeland Ecology & ..., 1996 - journals.uair.arizona.edu

... of fire on sage grouse foods, we separated insects into the 3 ... in juvenile sage grouse diets (Klebenow and Gray 1968, ... a serie environment did not support Klebenow's (1972) and ... ☆ Save 90 Cite Cited by 139 Related articles All 7 versions 30

#### [PDF] Diets and food selection of sage grouse chicks in Oregon

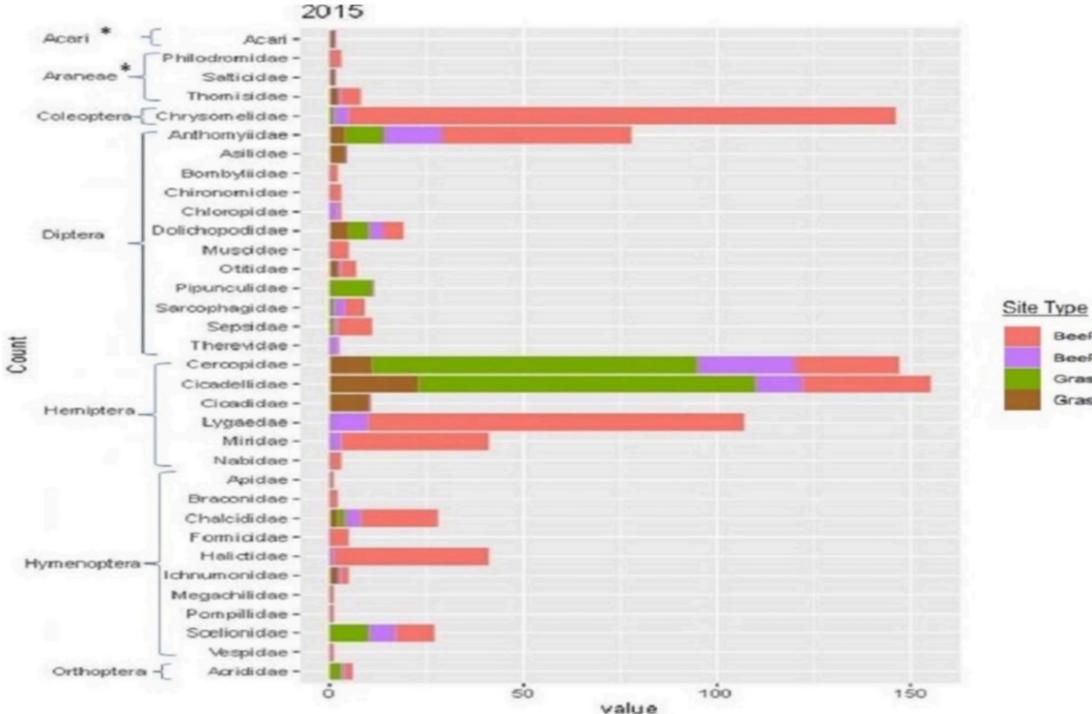
MS Drut, WH Pyle, JA Crawford - 1994 - repository.arizona.edu ... in the diets of chicks (Dargan et al. 1942, Klebenow and Gray 1968... Sage grouse chicks

### ELSEVIER Vo

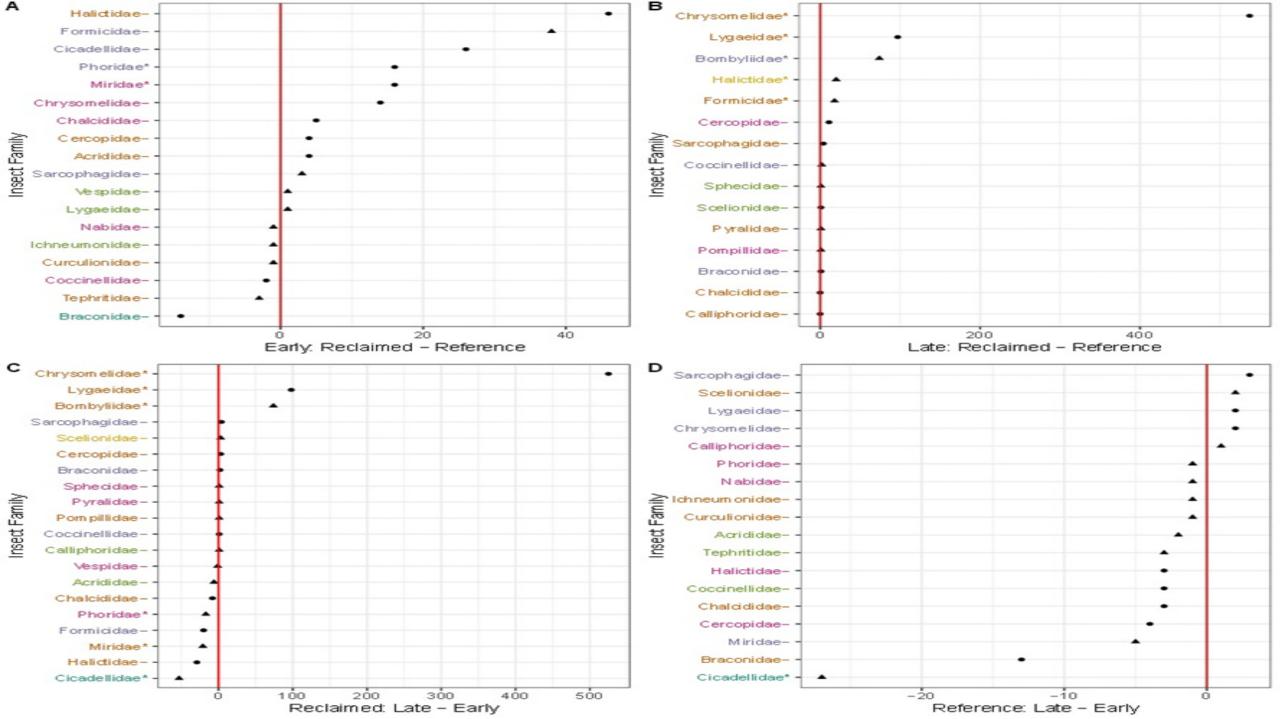
Rangelands

Rangelands Volume 37, Issue 6, December 2015, Pages 211-216

#### Original Research


Forbs and Greater Sage-grouse Habitat Restoration Efforts: Suggestions for Improving Commercial Seed Availability and Restoration Practices

Michael F. Curran, Taylor M. Crow, Kristina M. Hufford, Peter D. Stahl


Show more 🗸

|                                                                                                                                                                                                                                               | Agc (wceks) |             |               |                |          |             |                   |                      |                     |                       |                         |                            |                    |                      |                    |                      |                         |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|----------------|----------|-------------|-------------------|----------------------|---------------------|-----------------------|-------------------------|----------------------------|--------------------|----------------------|--------------------|----------------------|-------------------------|-------------------------------|
|                                                                                                                                                                                                                                               | 1           | l st        |               | 2nd            |          | 3rd         |                   | 4th                  |                     | 5th                   |                         | 6th                        | 7th                |                      | 8th-10th           |                      | Total                   |                               |
|                                                                                                                                                                                                                                               | (4)         |             | (4)           |                | (2)      |             | (5)               |                      | (7)                 |                       | (9)                     |                            | (7)                |                      | (6)                |                      | (44)                    |                               |
| Food item                                                                                                                                                                                                                                     | % volume    | % frequency | % volume      | % frequency    | % volume | % frequency | % volume          | % frequency          | % volume            | % frequency           | % volume                | % frequency                | % volume           | % frequency          | % volume           | % frequency          | % volume                | % frequency                   |
| FORBS<br>Common Yarrow (Achillea millifolium)<br>Mountain Dandelion (Agoseris sp.)<br>Loco (Astragalus convallarius)<br>Sego Lily (Calochortus macrocarpus)<br>Paintedcup (Castilleja angustifolia)<br>Tapertip Hawksbeard (Crepis acuminata) | 1           | 25          | 25<br>25      | 75<br>25       | tr       | 50          | 1<br>10<br>3      | 20<br>80<br>40       | tr<br>1<br>3<br>tr  | 14<br>29<br>29<br>14  | 8<br>2<br>5<br>9        | 22<br>11<br>33<br>44       | 2<br>12<br>23<br>3 | 29<br>57<br>43<br>29 | tr<br>tr<br>6      | 16<br>33<br>16       | tr                      | 18<br>2<br>41<br>27<br>7<br>7 |
| Prickly Lettuce (Lactuca serriola)<br>Harkness Gilia (Linanthus harknessii)<br>Nuttall Monolepis (Monolepis nuttaliana)<br>Phlox (Phlox longifolia)<br>Common Dandelion (Taraxacum officinale)<br>Goatsbeard (Tragopogon dubius)              | 45          | 50          | 12<br>2<br>25 | 25<br>25<br>25 |          |             | 6<br>48<br>8      | 40<br>60<br>40       | tr<br>tr<br>88<br>2 | 14<br>14<br>100<br>14 | 6<br>1<br>2<br>25<br>27 | 33<br>22<br>11<br>67<br>56 | 27<br>11           | 71<br>71             | tr<br>1<br>57<br>7 | 16<br>16<br>84<br>16 |                         | 9<br>18<br>5<br>2<br>61<br>32 |
| SHRUBS<br>Big Sagebrush (Artemisia tridentata)<br>Threetip Sagebrush (A. tripartita)<br>Lanceleaf Rabbitbrush (Chrysothamnus<br>viscidiflorus var. lanceolatus)                                                                               |             |             |               |                |          |             | 1                 | 40                   | 1<br>1              | 14<br>14              | 6                       | 22                         | 11<br>1<br>1       | 14<br>14<br>29       | 14                 | 50                   | 8<br>tr<br>tr           |                               |
| TOTAL PLANT VOLUME                                                                                                                                                                                                                            | 48          | 75          | 90            | 100            | 14       | 50          | 77                | 100                  | 98                  | 100                   | 93                      | 100                        | 91                 | 100                  | 85                 | 100                  | 89                      | 95                            |
| INSECTS<br>Ants (Formicidae)<br>Leaf Beetles (Chrysomelidae)<br>Ladybird Beetles (Coccinellidae)<br>Weevils (Curculionidae)                                                                                                                   | 5           | 75          | 3<br>1<br>tr  | 75<br>25<br>50 | tr<br>tr | 100<br>50   | 4<br>tr<br>1<br>1 | 80<br>40<br>60<br>60 | l<br>tr             | 86<br>14              | 2<br>2<br>tr            | 78<br>56<br>22             | 2<br>2<br>tr       | 86<br>43<br>14<br>14 | 12<br>2<br>tr      | 100<br>16<br>33      | 1<br>tr                 | 84<br>25<br>25<br>14          |
| Lamellicorn Beetles (Scarabeidae)<br>Darkling Beetles (Tenebrionidae)<br>Beetle Larvac<br>Grasshoppers (Locustidae)<br>Lace Bugs (Tingidae)                                                                                                   |             | 25<br>25    | 5<br>tr       | 25<br>25       | tr       | 50          | 1<br>1<br>11      | 40<br>20<br>40<br>20 | l<br>tr             | 14<br>14              | l<br>l<br>tr            | 22<br>33<br>11             | tr<br>5            | 29<br>29             | tr<br>tr           | 50<br>16             | 1<br>tr<br>2<br>1<br>tr | 2                             |
| Eruciform Larvae<br>Total insect volume                                                                                                                                                                                                       | 52          | 75          | 10            | 100            | 88       | 100         | 3<br>23           | 20<br>20<br>80       | 2                   | 86                    | 7                       | 78                         | 9                  | 100                  | 15                 | 100                  | tr<br>11                | -                             |

Klebenow & Grey, 1968 – Food Habits of the Juvenile Sage-grouse



BeePlant Treatment BeePlant Reference Grass Treatment Grass Reference





## Acknowledgements

- Co-authors
- Jonah Energy
- Wyoming Game & Fish Department