

Reclamation Bond Optimization Using 3d-Dig Plus

Jake Anderson - Maptek

Introduction

Overview

- Reclamation Bond
- Wyoming Guideline 12
- Bond Challenges
- Simulation Software Benefits
- Case Study (2D CAD vs. Two 3D-Dig Options)

Reclamation Bond

- Requirement for Annual Report
- Reduces Liability to State
- Becoming Increasingly Important
- Large Capital Expense for Operations

Wyoming DEQ Guideline 12

Appendix F Calculations for Moving Material with a Caterpillar D11R Dozer These costs are for dozing only. Material requiring drilling and blasting should have an additional \$0.259BCY added for D&B. If cast blasting will be used the D&B cost should be \$0.400/BCY.

Material Movement by Dozing With D11R

 Caterpillar D11R Dozer with U Blade 		
2) Operating Costs	\$457.68 per Hour	100% E-W
3) Labor Costs	\$44.97 per Hour	WYDOT-WDD
4) Supervisor Labor Costs	\$6.25 per Hour	1/8 of WYDOR-WDD
5) Supervisor Transportation	\$3.35 per Hour	1/8 of 100% E-W
6) Total Hourly Costs	\$512.25 per Hour	

100

TO USE TABLE: Locate your approximate grade by referencing "Grade" column. Determine cost per LCY by using the distance that best approximates your distance.

			Job Correction	on Factors ¹				
Distance (FL)	Productivity (LCY/Hr.)	Operator	Material	Visibility	Efficiency	Grade (0%)	Adjusted Productivity (LCY/Hr.)	Costs (\$/LCY)
50	4500	1.0	1.0	0.90	0.83	1.00	3374	\$0.152
100	3000	1.0	1.0	0.90	0.83	1.00	2249	\$0.228

Reclamation Bond Challenges

- Designing from Contours
- Using Generic Uniform Grades
- Trying to Balance Design
- How to Best Utilize Bond Methods
- What Other Challenges Can You Think Of?

Bond Challenges: Designing from Contours

- Can Guarantee Final Slopes
- Traditional Design Method
- Can be Difficult to Balance
- Time Intensive

Bond Challenges: Using Generic Grades for all Slopes

- Ensures Compliance is Met
- Makes Reconciliation Easier
- "Quick" Way of Creating Bond Surface
- Hides Subtle Details for Optimization

Bond Challenges: Difficulties in Balancing Materials

Transport Analysis

- Maintaining Cut/Fill balance Through Reserves/Volume Calcs
- Spend Extra Time Justifying Balance
- Often Taking Extra Cut to Make Balance

✓ Apply arcs length and volume filter Active for Display & Export	Cost Information for Su	ib-Region				
Active for Display & Export						
사망 수상 상태 2017년 11월 2017년 11월 2017년 2017	Average cost	0.0000	\$/bank.cub.yd			
Region polygon active	Average distance	0.00	ft			
Sub-region polygon active	Total cost	0.00	\$			
	Cut	0.0	bank cub.yd			
Cost Information for All Transport Region	Fill	0.0	bank cub.yd			
Average cost 0.0145 \$/bank cub.yd	Balance	0.00	%			
Average distance 293.80 ft	Apply polygon to c	Apply polygon to cut points				
Total cost 1652.07 \$	C Apply polygon to f	C Apply polygon to fill points				
Cut 113997.1 bank cub.yd	C Apply polygon to c	C Apply polygon to cut and fill points				
Fill 116552.3 bank cub.yd	C Apply polygon only	C Apply polygon only to complete arcs				
Balance 97.81 %	Select Polygon	Dr	aw Polygon			

- Picking Practical Equipment/Excavation Techniques
- Analyzing Cost Benefits of Certain Techniques

DEPARTMENT OF ENVIRONMENTAL QUALITY LAND QUALITY DIVISION

GUIDELINE NO. 12

STANDARDIZED RECLAMATION PERFORMANCE BOND FORMAT AND COST CALCULATION METHODS Benefits of Using a Simulation Software (3d-dig)

- Material is Transported to Design or Depletion
- Balance Checks are Simple (Excess Fill Remains in Material Log)
- Shows How Material is Transported Realistically
- Creates Simulation Videos to Share with DEQ/Shareholders/Superiors
- Decreased Learning Curve

Dump point

Case Example: 2D CAD vs. Reshape Tool vs. Dozer Simulation

- Generic Pit Design
- 11 degree slope
- Comparison is in LCY (1.1 Swell Factor)
- Area of Case Study
 - 11,000,000 ft²
 - ~ 250 acres

2D CAD Results

- Total Cut: 121,000 LCY
- Average Distance: 490 ft
- WYO DEQ Guideline 12 Cost (D11R Dozer) = \$91,000
- Time: 70 minutes

Reshaping Tool Results

- Total Cut: 125,000 LCY
- Average Distance: 294 ft
- WYO DEQ Guideline 12 Cost (D11R Dozer) = \$56,700
- Time: 5 minutes

Dozer Simulation Results

- Total Cut: 99,000 LCY
- Average Distance: 295 ft
- WYO DEQ Guideline 12 Cost (D11R Dozer) = \$45,000
- Time: 15 minutes (Including Reshaping Tool)

2D CAD vs. Reshaping Tool vs. Dozer Sim Volume Results

Results

- Simulation:
 - 22,000 LCY (19%) less material moved
 - \$46,000 total savings (50%)
- Reasons Why
 - Localizing Pushes to Shorter Lengths
 - Each Zone Builds into Each Other
 - Replicates "Real World" Scenarios

Conclusion

- Reclamation Bonds are an Important Task
- Optimizing Bond Designs Increase Efficiency and Present a Cost Benefit
- Using Simulation Software allows a 3D Solution for a 3D Problem

Thank you

www.maptek.com

Jake.Anderson@Maptek.com