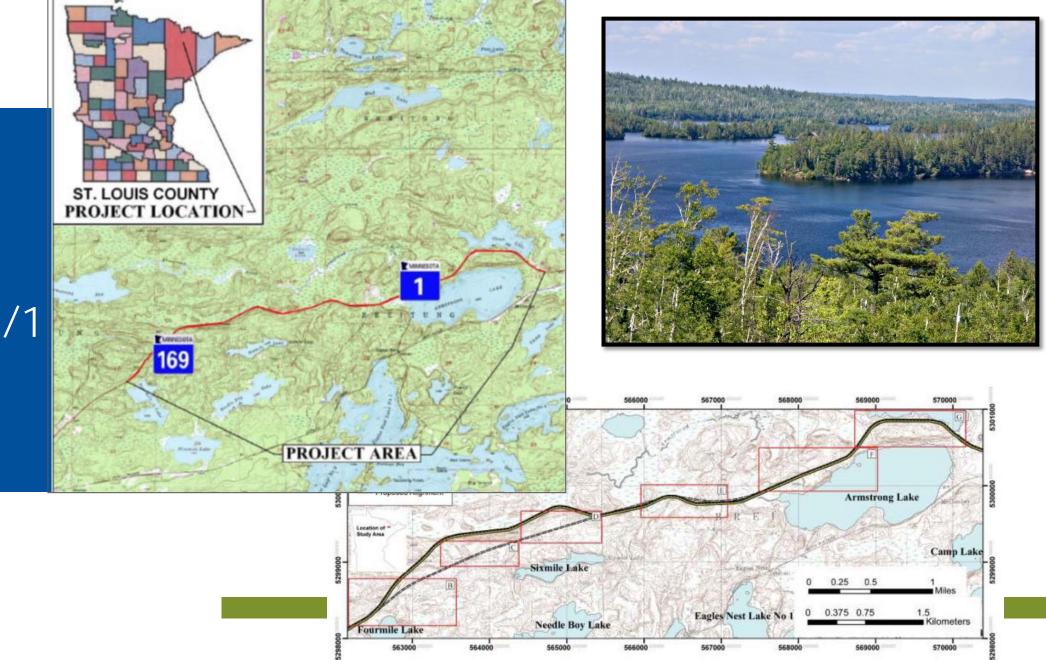


Integrating Geochemical Characterization and Field Methods


Mitigating Potentially Acid-Generating Construction Materials in Northern MN

Mehgan Blair, Irvin Mossberger – Barr Engineering Company Jason Richter – MN Department of Transportation Presented at ASMR, 2018, St. Louis, MO

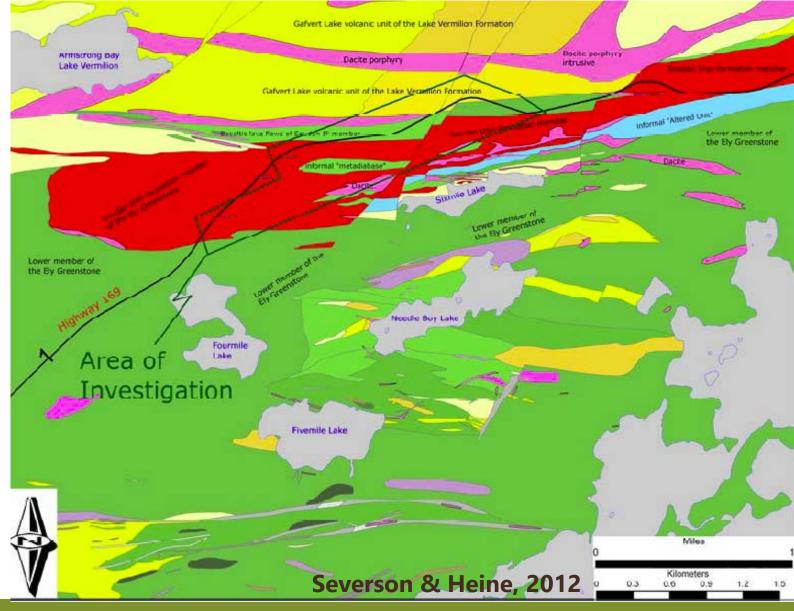
Martin and Martin and All Martin Martin and

Outline

- Project and site background
- PAG rock mitigation plan elements and basis
- Implementation
 - -Comparing plan versus implementation
- Project challenges and status

MnDOT Hwy 169/1

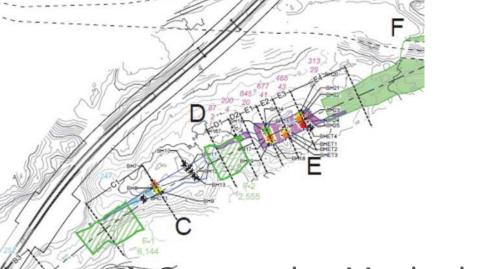
Project History



- Many serious and fatal accidents
- 2005: federal funding authorized
- 2010-16: NEPA review/EAW
 - -technical panels, 18 alternatives vetted, studies
 - -acid rock drainage concern
- 2016: potentially acid generating (PAG) mitigation plan completed

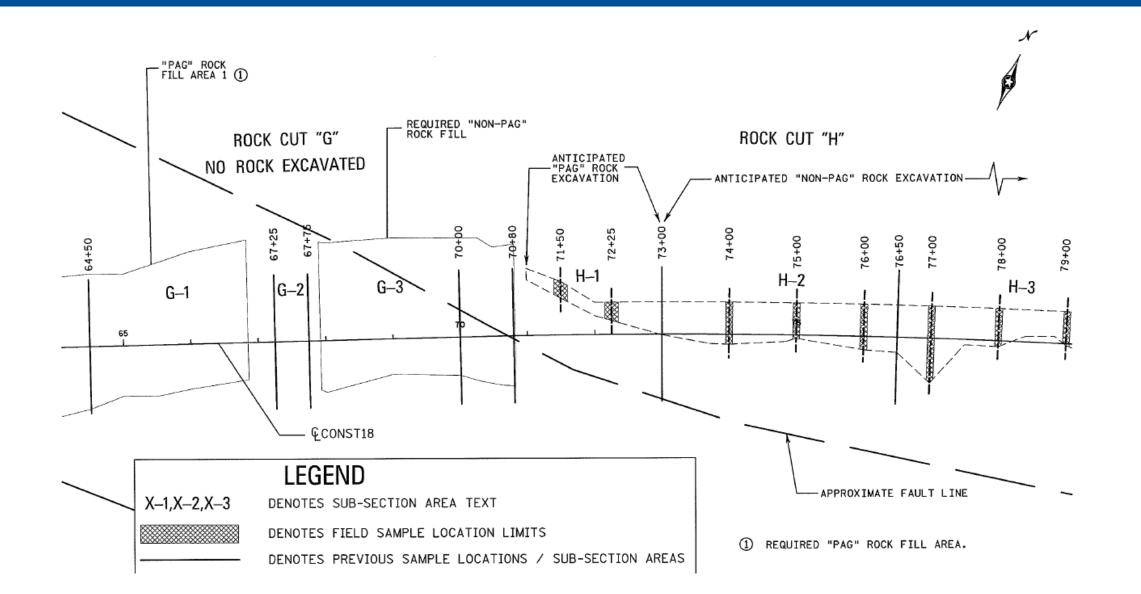
Site geology

Mitigation Plan Methods


• Acid-base accounting:

- total sulfur and carbon; speciated forms of sulfur
- neutralization potential (by titration)
- Whole rock geochemistry
- Identified a design criteria for PAG rock of neutralization = 3x acid potential
- Preliminary lime demand for the project

PAG rock mitigation plan


Plan Protocols \rightarrow

- Designated PAG/non-PAG
- Placed limits on crushing
- Consolidation plan, specs on neutralizing agents to prevent ARD
 - ID dosing rates limestone/ag lime
 - lining ditches with limestone
 - repository designs
- monitoring for 10 years

- Construction Monitoring Needs
- confirmatory testing for sulfur
- adjustment of lime dose rates based on PAG rock and lime characteristics
- Screening aggregate sources

plans: pre-blast testing; planning for PAG fill

Lime "Mitigation"/Dosing; design criteria = NPR ≥ 3

- Net Potential Ratio = Neutralization Potential/Acid Potential
- "3" is a safety factor and is repository design criteria
- AP and NP were pre-determined to provide estimate of "mitigation" (augmentation of NP), to achieve NPR = 3

$$\mathbf{3} = \frac{NP}{AP}$$

• NP comes from rock AND from added lime "mitigation"

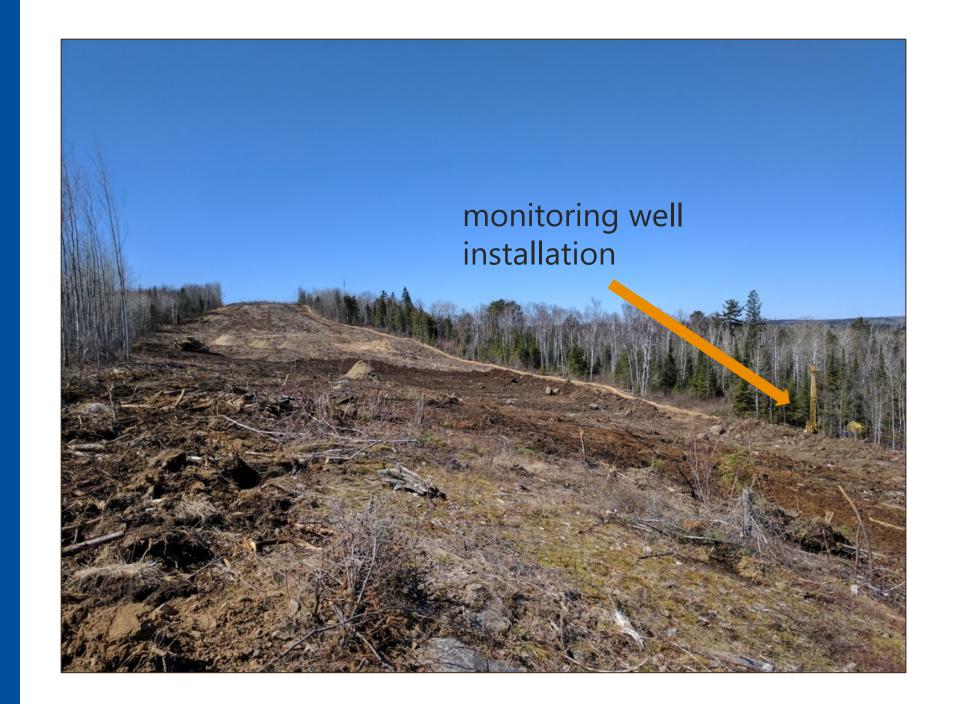
Dosing; design criteria = $NPR \ge 3$

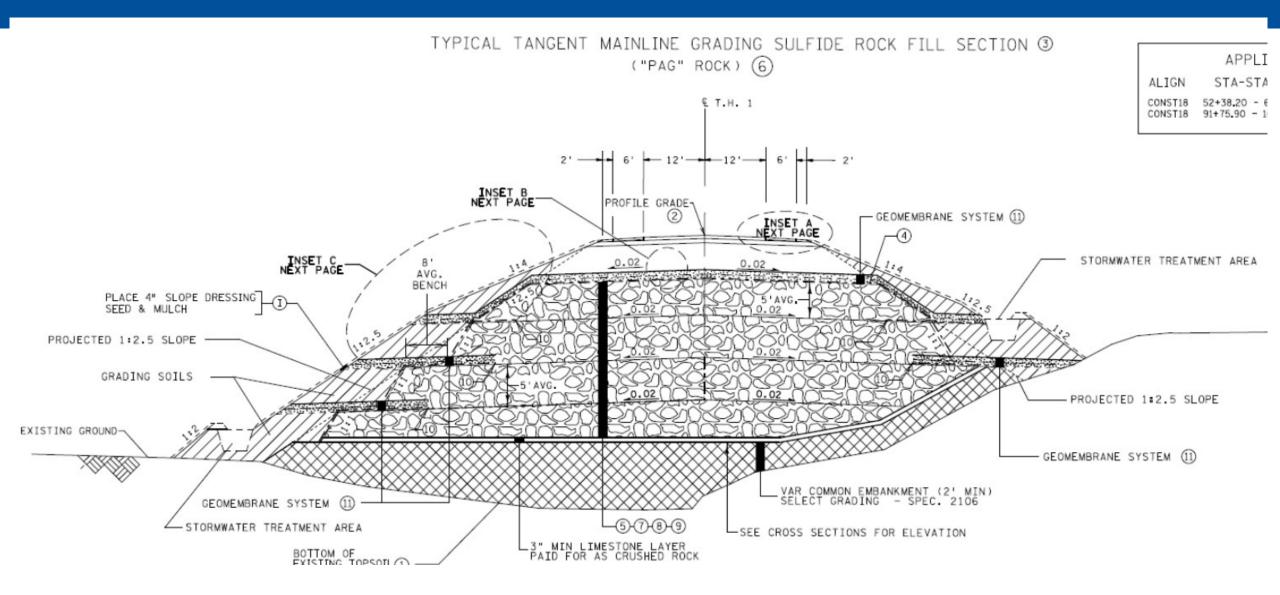
- Revise AP with additional sampling during construction, "on the fly"
- NPR \geq 3, Remembering **3** = $\frac{NP}{AP'}$, so the "dosing equation" =

$$NP_{mitigation} = (3 \cdot AP_{revised}) - NP_{rock}$$

 NP expressed in tons CaCO₃/kt rock, so tell the contractor how many tons of lime (ag lime/limestone) to add.

Blasting the highs




Filling the lows

rock-coredhighway

- 65' high PAG rock landfill

plans: PAG fill/repository

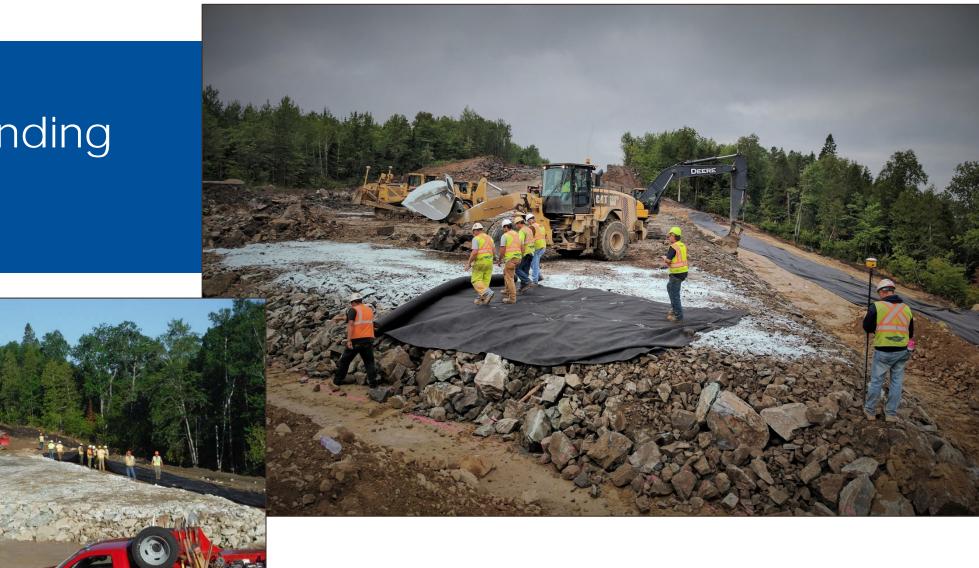
Hauling, dosing, placing, grading

Building successive benches

Lots of equipment - 20 side dumps - 14 articulators

- 3 dozers
- 2 rollers
- -1backhoe

Fast, intense pace, in restricted work area



Dose rates. . .

Rock Cut and Section Details Results of Field							Limestone					Ag Lime				
Rock Cut	Rock Cut Section	STA to STA	Pre- constructi on Rock Cut Section Volume Estimate	Field Verified Rock Cut Section Volume	Revised Limestone Requirement (based on new %S and/or rock volume)	Truck Count Estimate	Total Corrected mass	Total corrected volume	Application Rate	Section Totals	Section Totals	Total Corrected mass	Total corrected volume	Application Rate	Sectioin Totais	Section Totals
٩	Q1	357+00-359+00	16	30	0	2	0.0	0.0	0.0	34.6	18.4	0.0	0.0	0.0		
	Q2	359+00-36100	1,617	1,112	0	62	0.0	0.0	0.0			0.0	0.0	0.0		
	Q3	361+00-362+00	1,157	838	0	47	0.0	0.0	0.0			0.0	0.0	0.0	44.5	41,9
	Q4	362+00-365+00	4,786	7,189	41	399	19.9	10.6	0.03			25.6	24.1	0.06		41.5
	Q5	365+72-368+00	7,151	5,011	28	278	13.9	7.4	0.03			17.8	16.8	0.1		
	Q6	368+00-370+50	72	711	2	39	0.8	0.44	0.011			1.1	1.0	0.025		
R	R1	374+00-375+50	538	648	0	36	0.0	0.0	0.0	0.5	0.2	0.0	0.0	0.0	0.6	0.6
	R2	375+50-379+00	2,888	1,411	1	78	0.5	0.2	0.0031			0.6	0.6	0.0071		
	R3	379+00-382+50	0	0	0	-	0.0	0.0	#VALUE!			0.0	0.0	#VALUE!		
	R4	382+50-385+00	689	850	0	47	0.0	0.0	0.0			0.0	0.0	0.0		
	R5	385+00-386+00	299	13	0	1	0.0	0.0	0.0			0.0	0.0	0.0		
	R6	386+00-388+00	0	0	0	-	0.0	0.0	#VALUE!			0.0	0.0	#VALUE!		
		390+28.96-										1				

- Adjustments to preliminary dose rate on the fly:
 - Incorporate new sulfur values
 - Lime quality, moisture, CEC, etc.
 - Estimated volume of the trucks and of backhoe bucket, etc.

Ideal blending

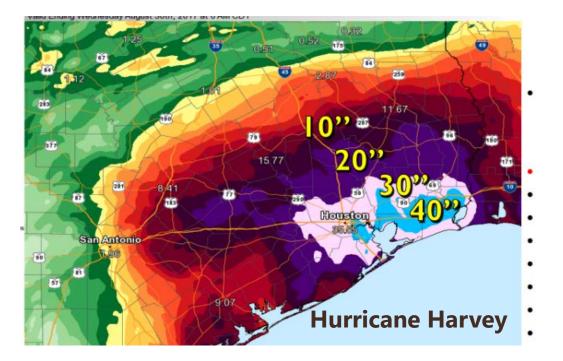
Fabrics and covers

Plan versus execution

• TAT too long

- -Confirmatory testing "on the fly"/ another pre-construction program
- Blending impractical at low dose rates
 - -Combined blending and layering
- "Examination of saturated hydric soils" - PAG/non-PAG?
 - -Reactive secondary sulfides
 - -field leach test, odor after HCl,

Many arrows in our geochemical methods quiver!


Consider suitability for use in

- -plan development:
 - Comprehensive for risk assessment
 - Customized to rock type versus
- construction monitoring:
 - Quick turn-around
 - Cost-efficient
 - Interpretable
 - Executable

additional project challenges

• Rain

- Snow
- Hurricane

Project stats

>200 sulfur samples added

6.5 miles of new road

60,000 cy PAG rock managed

Project status

- Final bituminous summer 2018
- Ongoing groundwater monitoring
- Development of MnDOT guidance

Questions?

