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Neosho River Bottoms
• ~25,000 acre floodplain and upland area

• Significant restoration opportunities
• Bottomland hardwood forest
• Oxbow lakes
• Scrub shrub wetland
• Eastern tall grass prairie

• GRDA acquired 3,600 acres along the 
Neosho River
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The area of interest south of Superfund Site
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Soil Trace Metals Detection
• Inductively coupled plasma optical 
emission spectrometry (ICP-OES)
• Inductively coupled plasma mass 
spectrometry (ICP-MS) 

• X-ray fluorescence (XRF)
• On-site fast screening method for soil metals
• Cost effective when compared to ICP methods
• Viewed by the environmental community as an 

acceptable analytical approach for field 
applications

*Insert general 
pic of XRF in black 
case
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Hypotheses
In situ XRFS readings with moisture contents exceeding 20% will report lesser metals 
concentrations than laboratory XRFS readings where the soil was homogenized, dried, and 
sieved.

Homogenized, dried, and sieved soils analyzed by the XRFS in the laboratory will yield 
concentrations not statistically different from ICP-OES metals concentrations.
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Thermo-Fisher Scientific 
Niton XL3t GOLDD+ XRF



The soil metal concentration in the floodplain were 
determined three different ways

Method 1: In Situ

Field Portable XRF Analyses (EPA 6200)
Bulk Sample
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• Soil samples were collected using stainless steel shovel
• 13 cm X 13 cm X 10 cm cuttings
• Sealed tightly in 3 mil or thicker plastic bag

• Sample locations were recorded with GPS

• Transported back to laboratory

The soil metal concentration in the floodplain were 
determined three different ways



In Situ

Field Portable XRF Analyses (EPA 6200)
Bulk Sample

Laboratory
Moisture content (ASTM D226-10) 

Loss-on-ignition (Dean 1974)

Method 1:
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The soil metal concentration in the floodplain were 
determined three different ways



In Situ

Field Portable XRF Analyses (EPA 6200)
Bulk Sample

Laboratory
Field Portable XRF Analyses (EPA 6200)

Dried and < # 60 Sieve Fraction

Method 2:

Method 1:
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The soil metal concentration in the floodplain were 
determined three different ways



Laboratory
Microwave HNO3 digestion (EPA 3051)

Inductively Coupled Plasma-Optical Emission Spectrometry 
(ICP-OES) Analyses (EPA 6010)
Dried and < # 60 Sieve Fraction

Method 3:

19

The soil metal concentration in the floodplain were 
determined three different ways
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The soil metal concentration in the floodplain were 
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Sampling Locations
• Elm Creek riparian zone

• Road crossings (intersecting the stream) 
• GRDA property
• 106 soil samples

• Neosho Bottoms uplands
• 278 soil samples
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Relation Between Field and Laboratory XRF Concentrations

Field XRF [Pb] 
↑ than lab 

XRF

Lab XRF [Pb] 
↑ than field 

XRF
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Relation Between Upland Field and Laboratory XRF Concentrations
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Pb and Zn Laboratory XRFS v. ICP 
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R² = 0.9157
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ICP Cadmium v. Zinc
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R² = 0.9327
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Organic Matter Analysis
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• Lead XRFS and ICP concentrations:
• Statistically similar for OM >10%
• Statistically different for OM <10% 

• Zinc statistically different for both 
OM ranges



Conclusions
In situ XRFS readings with moisture contents exceeding 20% will report lesser metals 
concentrations than laboratory XRFS readings where the soil was homogenized, dried, 
and sieved.

Homogenized, dried, and sieved soils analyzed by the XRFS in the laboratory will yield 
concentrations not statistically different from ICP-OES metals concentrations.
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Conclusions
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• XRF may not be suited for in situ soil analysis 
due to variability in field conditions

• Sample preparation (drying and sieving), is 
necessary to generate reliable values 

• XRF may only operate as a screening tool for 
zinc due to overreporting

• For most accurate lead concentrations in 
soils with high organic content, researchers 
should consider ICP analysis
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