

The UNIVERSITY of OKLAHOMA Gallogly College of Engineering School of Civil Engineering and Environmental Science

A Comparison of Methods for Analyses of Soil Trace Metals in a Mining Impacted Agricultural Watershed

Amy Sikora

School of Civil Engineering and Environmental Science

University of Oklahoma

June 5, 2018

Introduction

Methods & Locations

Hypotheses

Results & Conclusions

Introduction

Neosho River Bottoms

• ~25,000 acre floodplain and upland area

- Significant restoration opportunities
 - Bottomland hardwood forest
 - Oxbow lakes
 - Scrub shrub wetland
 - Eastern tall grass prairie
- GRDA acquired 3,600 acres along the Neosho River

Neosho River Bottoms

• ~25,000 acre floodplain and upland area

- Significant restoration opportunities
 - Bottomland hardwood forest
 - Oxbow lakes
 - Scrub shrub wetland
 - Eastern tall grass prairie
- GRDA acquired 3,600 acres along the Neosho River

The area of interest south of Superfund Site

The area of interest south of Superfund Site

Soil Trace Metals Detection

- Inductively coupled plasma optical emission spectrometry (ICP-OES)
- Inductively coupled plasma mass spectrometry (ICP-MS)
- X-ray fluorescence (XRF)
 - On-site fast screening method for soil metals
 - Cost effective when compared to ICP methods
 - Viewed by the environmental community as an acceptable analytical approach for field applications

Soil Trace Metals Detection

- Inductively coupled plasma optical emission spectrometry (ICP-OES)
- Inductively coupled plasma mass spectrometry (ICP-MS)
- X-ray fluorescence (XRF)
 - On-site fast screening method for soil metals
 - Cost effective when compared to ICP methods
 - Viewed by the environmental community as an acceptable analytical approach for field applications

Hypotheses

Hypotheses

In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.

Hypotheses

In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.

Methods & Locations

Methods & Locations

In Situ Method 1: Field Portable XRF Analyses (EPA 6200) Bulk Sample

- Soil samples were collected using stainless steel shovel
 - 13 cm X 13 cm X 10 cm cuttings
 - Sealed tightly in 3 mil or thicker plastic bag
- Sample locations were recorded with GPS
- Transported back to laboratory

Method 3:

Laboratory

Microwave HNO₃ digestion (EPA 3051) Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Analyses (EPA 6010) Dried and < # 60 Sieve Fraction

Sampling Locations

- Elm Creek riparian zone
 - Road crossings (intersecting the stream)
 - GRDA property
 - 106 soil samples

- Neosho Bottoms uplands
 - 278 soil samples

Sampling Locations

- Elm Creek riparian zone
 - Road crossings (intersecting the stream)
 - GRDA property
 - 106 soil samples

- Neosho Bottoms uplands
 - 278 soil samples

Sampling Locations

- Elm Creek riparian zone
 - Road crossings (intersecting the stream)
 - GRDA property
 - 106 soil samples

- Neosho Bottoms uplands
 - 278 soil samples

Results & Conclusions

Relation Between Field and Laboratory XRF Concentrations

Relation Between Field and Laboratory XRF Concentrations

Relation Between Upland Field and Laboratory XRF Concentrations

Relation Between Upland Field and Laboratory XRF Concentrations

Relation Between Upland Field and Laboratory XRF Concentrations

ICP Cadmium v. Zinc

Organic Matter Analysis

- Lead XRFS and ICP concentrations:
 - Statistically similar for OM >10%
 - Statistically different for OM <10%

• Zinc statistically different for both OM ranges

In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.

In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.

1

In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.

- In situ XRFS readings with moisture contents exceeding 20% will report lesser metals concentrations than laboratory XRFS readings where the soil was homogenized, dried, and sieved.
- 2

Homogenized, dried, and sieved soils analyzed by the XRFS in the laboratory will yield concentrations not statistically different from ICP-OES metals concentrations.

-cepted

- XRF may not be suited for *in situ* soil analysis due to variability in field conditions
- Sample preparation (drying and sieving), is necessary to generate reliable values
- XRF may only operate as a screening tool for zinc due to overreporting
- For most accurate lead concentrations in soils with high organic content, researchers should consider ICP analysis

- XRF may not be suited for *in situ* soil analysis due to variability in field conditions
- Sample preparation (drying and sieving), is necessary to generate reliable values
- XRF may only operate as a screening tool for zinc due to overreporting
- For most accurate lead concentrations in soils with high organic content, researchers should consider ICP analysis

- XRF may not be suited for *in situ* soil analysis due to variability in field conditions
- Sample preparation (drying and sieving), is necessary to generate reliable values
- XRF may only operate as a screening tool for zinc due to overreporting
- For most accurate lead concentrations in soils with high organic content, researchers should consider ICP analysis

- XRF may not be suited for *in situ* soil analysis due to variability in field conditions
- Sample preparation (drying and sieving), is necessary to generate reliable values
- XRF may only operate as a screening tool for zinc due to overreporting
- For most accurate lead concentrations in soils with high organic content, researchers should consider ICP analysis

Acknowledgements

- GRDA grant #1053733
- Aaron Roper, GRDA
- OU CREW
 - Thank you to everyone who helped with field sampling, laboratory analysis, and data reduction!
- Darren Shepherd
- Lane Maguire

Questions?