

# Eucalypt plantations for mine site rehabilitation, carbon and wood products

Ashley Webb<sup>1</sup>, Georgina Kelly<sup>2</sup> & Nick Cameron<sup>1</sup>

<sup>1</sup> NSW Department of Primary Industries, Australia
 <sup>2</sup> NSW Office of Environment and Heritage, Australia

## ACARP

Australian Coal Association Research Program

## Acknowledgements

ACARP (Project C20015) NSW Department of Primary Industries Coal & Allied (Rio Tinto/Yancoal) Rixs Creek (Bloomfield Group) Bulga Coal (Glencore) Integra Coal (Glencore) Narama Coal (Ravensworth/Glencore) Macquarie Generation (AGL Macquarie) Forestry Corporation of NSW





Managed by Rio Tinto Coal Australia







s agl



- - Coal mining has occurred for >200 years in the Hunter Valley, NSW
  - Central to economic development
  - 17 mines in Upper Hunter
  - >100 million tonnes p.a.

#### - Open cut:

- Topsoil removed, stockpiled and re-used in rehabilitation (20,000 ha required)
- Traditionally, pastures established – low value
- Eucalypt forests have been trialled as an alternative
- Buffer land also planted

### Previous Hunter Valley Research (1999-2010)

- Site preparation techniques for plantations:
- ripping, contours, mounding, slopes...
- Soil amendments e.g. biosolids, fly ash, bottom ash, MSWC, mulch...
- Species trials:
- Established timber species
- Clonal hybrids
- Dryland (non-traditional forestry) situations





#### Bulga

## **Overburden establishment**









## Treatment Effect on the Overburden



## Growth – Rehabilitated Overburden





## New Phase of Research

#### **Objective:**

 Quantify the benefits of an early non-commercial thinning and pruning regime on dryland forest plantations in the Upper Hunter Valley

*E. camaldulensis x grandis* (Bulga overburden)



## **Specific Aims**

- Gather a Valley wide data base on most of the oldest tree plantations
- Apply thinning and pruning regimes to assess the benefit of early application in dryland plantations
- Manage existing stands via thinning to reduce risk of death and to maximise high value wood products and carbon returns
- Provide strongly-based full rotation projections (from yr 15 data) on performance of species, land type and the species/land type interaction
- To quantify the commercial costs and returns from carbon and timber from *Corymbia maculata* (Spotted gum) plantations; and
- To compare investment in plantation forestry with grazing and agroforestry options



## Plot Measurement & Marking

| Site                    | Land Type  | Species                                                       | No.Plots |
|-------------------------|------------|---------------------------------------------------------------|----------|
| Coal &<br>Allied (HVO)  | River      | E.camaldulensis*E.grandis<br>, E.camaldulensis<br>*E.globulus | 8        |
|                         | Overburden | E.camaldulensis*E.grandis<br>, C.maculata                     | 26       |
|                         | Buffer     | E.camaldulensis*E.grandis<br>, C.maculata                     | 22       |
| Integra                 | River      | E.camaldulensis*E.grandis                                     | 12       |
|                         | Overburden | E.camaldulensis*E.grandis<br>, C.maculata                     | 16       |
| Macquarie<br>Generation | Buffer     | C.maculata, E.sideroxylon,<br>E.mollucana,<br>E.argophloia.   | 40       |
| Rix's Creek             | Overburden | C.maculata                                                    | 16       |
| Xstrata-<br>Narama      | Overburden | E.camaldulensis*E.grandis<br>, C.maculata                     | 48       |
| Xstrata-<br>Bulga       | Buffer     | E.camaldulensis*E.grandis<br>, C.maculata,<br>E.camaldulensis | 24       |
|                         | Overburden | E.camaldulensis*E.grandis<br>, C.maculata,<br>E.camaldulensis | 48       |



8900 trees were planted in the trial plots used in this project

## **Non-commercial Thinning & Pruning**



Thinning occurred over a period of 2.5 months (Oct-Dec 2011)

Felled approx. 1350 trees across the 3 sites (Mac Gen, Integra & C&A) to a stocking of ~500 stems/ha

Approx. 1800 trees were pruned to a height of 3 metres.

Manual thinning of *E. camaldulensis x grandis* trees, Integra 2011



Regrowth or coppicing in the thinned plots were removed and the stumps treated with glyphosate in 2012

## Plot Analysis & Calculations

- Survival
- Stocking (stems/ha)
- Basal Area (m<sup>2</sup>/ha)
- Stand Volume (m<sup>3</sup>/ha)
- Dominant Height (m) mean height of the largest 100 stems/ha
- Dominant DBH (cm) mean DBH of the largest 100 stems/ha.



## **Species Trial(s) Results**



Macquarie Generation (Buffer site)

Spotted Gum was a consistent performer

18



#### Integra – rehabilitated Overburden

#### Rixs Creek – rehabilitated Overburden



*E. camaldulensis* (River red gum) did not perform well (left of photo)

*E. camaldulensis* x *grandis* hybrids (right) performed well at some sites:

- similar height to C. maculata

- smaller diameter and volume

#### Bulga - Overburden

## Valley-wide Results

- Two species were planted at multiple sites:
- Corymbia maculata (Spotted gum)
- Eucalyptus camaldulensis x grandis (Hybrid)

*E. camaldulensis* x *grandis*, Integra River site



#### C. maculata (Spotted gum) on rehabilitated Overburden sites



#### C. maculata (Spotted gum) – dominant DBH and height



#### E. camaldulensis x grandis on rehabilitated Overburden sites

![](_page_21_Figure_1.jpeg)

#### E. camaldulensis x grandis – dominant DBH and height

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

\_\_\_\_\_

## **Commercial Viability of Spotted Gum plantations**

- Spotted Gum (*Corymbia maculata*) overall best performer
- Grows as well or better on Overburden
- Growth projections have been used in modelling but would benefit from future measurements and validation
- Superior growth performance and marketable wood qualities
- <u>Aims:</u>
- Quantify the commercial costs and returns from Spotted gum plantations
- Compare Forestry and Agroforestry with beef cattle Grazing (NPV & IRR)

![](_page_24_Picture_8.jpeg)

"Old Blotchy" – DBH 3.4m, Height 59m

## Grazing

- Default land use
- Grazing leases
- Following rehabilitation, mines fence the land
- Paddocks 20-100 ha (default 50 ha)
- Graziers supply stockyards; control weeds, pests; maintain fences

![](_page_25_Picture_6.jpeg)

## Forestry

- Mine owns land and trees
- Initial stocking 1000 stems/ha
- <u>Timber value</u>:
- Single crop 35 years on 50 ha
- Multiple crop 70 years planting
  50 ha p.a. = 1750 ha total
- Commercial hardwood prices
- <u>Carbon credit value</u>:
- Full Carbon Accounting Model (FullCAM)
- Prices as per Commonwealth Emission Reduction Fund
- <u>Grazing value</u>:
- Stocking 25% of "Grazing" case after year 5
- Rent from lease (agistment)

![](_page_26_Picture_13.jpeg)

## Agroforestry

- Silvo-pastoral systems -~20 m rows, 200 stems/ha
- Income from Carbon, Grazing and Wood products
- Other benefits:
- Reduced wind speed
- Soil and water protection
- Greater biodiversity
- Shade and shelter for stock
- Soil moisture retention (hot summers)

![](_page_27_Picture_9.jpeg)

## **Cashflow results**

![](_page_28_Figure_1.jpeg)

- Grazing the lowest risk
- Forestry/Agroforestry single crops "irregular"
- Annual planting regime
   → sizeable and regular
   cashflow
- Carbon revenue generated in first 10 years offsets one-third of establishment costs
- Agroforestry a blend that mitigates some of the Forestry risk, but without losing all the revenue flow benefits

## Conclusions

- Spotted Gum overall best performer
- Grows as well or better on Overburden
- Thinning has not yet led to an increase in stand volume
- Mean DBH and Height have increased, as has form, which should result in higher value timber products
- Growth projections have been used in modelling but would benefit from future measurements and validation
- Diversification of land use to include Forestry and Agroforestry investment requires mining companies to accept and embrace the associated risks of these investments.
- The rewards over the longer term are an increased revenue stream and the creation of a resource upon which new industry can be built.