MODELING AND PARAMETER SENSITIVITY OF MINE POOL FORMATION IN THE MEIGS MINE OHIO

Frederick Twumasi, Dina L. Lopez, Natalie Kruse, Jen Bowman, Lindsey Schafer, Robert Barber-Delach, Nora Sullivan, Rebecca Steinberg, Zachary Mathews

Introduction

- The development and release of mine drainage and formation of mine pools in decommissioned coal mines is an environmental problem for government regulators, mining companies and the communities.
- Acid Mine Drainage (AMD) is produced when sulfide minerals in rocks are subjected to oxidizing conditions.
- An area impacted by acid mine drainage experiences physical, chemical, and biological degradation.

Introduction

- Mine pool formation depends on factors such as
 - recharge of water to the mine
 - geology
 - hydrostratigraphy
 - precipitation and infiltration
 - connectivity of the mine with other neighboring mines
- This research is part of a larger project that intends to produce a set of GIS based tools for the determination of the development of mine pools.

Objectives

Hydrologic modeling of a single mine complex:

- To investigate the flow regime of the mine and the response of the water levels in the mine after the mine is closed.
- To study the sensitivity of the Meigs Mine Complex hydrogeological parameters that determine the development of mine pools using MODFLOW.

Hydrologic Modeling Case Study

 The Meigs Mine Complex is an example of a flooded underground mine which has been extensively monitored

Meigs Mine Hydrologic Data

Hydrologic Model Boundary

Hydrogeological modeling

- Contacts maps were generated out of the various calculated contact elevation of the boreholes and imported into MODFLOW for model building.
- The mine area was gridded which created a total of 6,320 nodal points throughout the model.

Aquifers

- Maps of potentiometric elevation in the wells of each aquifer were constructed to determine the flow regime of the area.
- The sandstone aquifers were identified as zone A, zone B and zone C.
- These aquifers were identified in the cross-sectional view of the MODFLOW grid.

Boundary conditions of the modeled area

Layer 1 (shale)

Coal layer

Cross-sectional view of aquifers

Northing (feet)

Cross sectional area map of the layers showing

the aquifers in a South-North directions

The best student-centered learning experience in America

Cross sectional area map of the layers showing the aquifers in a East-West directions ica

Potentiometric Head Maps

UNIVERSITY

Boundary conditions for recharge zones

Easting (feet)

Recharge zone boundary (retrieved from https://websoilsurvey.sc.egov.usda.gov)

Cross-correlogram

A maximum in cross correlation coefficient between accumulated precipitation and pool elevation in the grange shaft with head responding to precipitation after 4 months.

Transient data analysis

With a lag time of 4 months and overburden thickness of 290 feet for the Grange shaft a flow velocity of 2.4 feet/day was calculated.

Hydrogeological modeling

- Meigs Mine Complex has experienced several stages from active mining to post-mining conditions.
- Active-mining conditions and modeling:
 - Steady-state model to reproduce water levels in the wells assuming no pumping
 - Steady-state model to reproduce water levels in the shafts assuming pumping: to simulate initial water levels during head recovery

Post Mining Conditions:

- The mine was allowed to recover the water levels without pumping from January 2004 until December 2007.
- Water was pumped from the mine from January 2008 until October 2016.

Hydrogeological modeling

Post-mining modeling conditions:

- Transient model to simulate the recovery of the water levels during the period of free recovery
- Pumping period after mine closure was not simulated because it is not of interest for this project.

MODFLOW simulations: Active mining

- A steady-state numerical simulation assuming no pumping (first model) and pumping (second model)
- The first model was calibrated changing recharge values and the hydraulic conductivity for each layer until the lowest error values based on calculated heads and observed heads was obtained.
- For the second model assuming pumping only the pumping rates were changed.

Calculated heads versus the observed heads for the steady-state model with pumping during active mining

Second steady state model. **Aquifer C flow** regime showing equipotential head contour intervals of 20ft. **Olive areas** constitute areas of unsaturation whiles white areas constitute areas of saturation.

Post mining: Transient-state model

Transient simulations were conducted to

- Establish the changes in groundwater flow conditions throughout the modeled area with respect to time.
- Calibrate hydrogeological parameters during the recovery period of the Meigs Mine Complex.
- The recovery period of the Meigs Mine Complex is very important because they reflect how the hydrology responds to the hydrogeological parameters after mining.

Post mining: Transient-state model

- The transient simulations were conducted based on the initial conditions of the calibrated model with pumping during active mining.
- Variables such as hydraulic conductivity, specific yield, specific storage and recharges were calibrated for transient simulation.
- The transient model was simulated for a period of 4 years (January 2004 to December 2007).

Transient-Model Result Error

Calculated heads versus observed heads

Calculated heads versus observed heads without NW shaft

Transient Model Results

Aquifer A

Easting (feet)

Aquifer C

Transient-state model

Calibrated hydraulic conductivity values

Lithological Units	Hydraulic conductivity (feet/day)		
	Kx	Ky	Kz
Layer 1 (Shales)	1.1	1.1	1.1
Layer 2 (Sandstones)	6.5	6.5	6.5
Layer 3 (shales)	0.04	0.04	0.04
Layer 4 (sandstones)	0.1	0.1	0.1
Layer 5 (shales)	0.8	0.8	0.8
Layer 6 (sandstones)	14	14	14
Layer 7 (shales 4A)	0.00009	0.00009	0.00009
Layer 7 (shales 4B)	0.0005	0.0005	0.0005
Layer 8 (coal)	0.0001	0.0001	0.0001
Voids	45	45	45
Layer 9 (shale)	0.02	0.02	0.02

Calibrated recharge values

Recharge (Inches/year)
0.1
1.5
1.4
0.01

Units	Hydraulic conductivity (feet/day)	
Sandstones	(0.000085 to 1.701)	
Shales	(0.00000028 to 0.000566)	
Coal	(0.00000028 to 0.000566)	

(Domenico and Schwartz 1990)

Sensitivity analysis

Shales hydraulic conductivity

Aquifers hydraulic conductivity

Conclusion

- Lithological units have high permeability, these results are consistent with highly fractured rocks and secondary permeability due to the exploitation of the coal.
- Properties of lithological units closer to the mined coal were very sensitive to the model in both steady and transient state simulations.

Acknowledgement

- Dr. Dina Lopez
- Dr. Natalie Kruse
- Lindsey Schafer
- Nora Sullivan
- Jen Bowman
- Rebecca Steinberg
- Zachary Matthews
- Robert Barber-Delach

