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Challenges

e Oil & Gas development

* Well pad restoration

* Pre-disturbed state
* Native vegetation
* Heterogeneity

* Monitoring .
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Nauman, T. W., Duniway, M. C.,Villarreal M. L., and T. B. Poitras. 2007. Disturbance automated
reference toolset (DART): Assessing patterns in ecological recovery from energy development on the
Colorado Plateau. Science of the Total Environment 585: 476 — 88.




Objectives

* Primary Objective: Evaluate
benefits/trade-offs
e Vegetative cover analysis

e Functional Groups
e Species I.D.

150 Meters



* Well pads
e Rio Blanco County, CO

e 1962 — 2008; abandoned or
reclaimed

e 7 well pads
e 2 reference sites

e LPI Plots
e 15 x 20m transects
* 300 points

e Area of “best” recovery
chosen
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Methods: Remote Sensing
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e Drone mounted camera —
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* CIR (False Color)

MicaSense Red Edge Sensor o Awra (S
e 5Bands (R,G,B,RE,NIR) & ARTR &
* Average 5cm resolution s AscO Eg
(~160,000 Pixels / LPI Plot) o Ascp (RGN
e Landsat: Average 30m resolution ¢ pock B
(~1 Pixel / LPI Plot) e
e Supervised Classification - ENVI & ELLA
e Created training data & ERNA
e LPI Grid o GUSA |
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e Extrapolation to well pad
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Species

B Pinon Pine

B uniper

B sagebrush

Rabbitbrush

B snakeweed

Herbaceous/Litter
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Species: Supervised
Classification Cover
Predicts LPI Cover

e Species |.D. w/ less
accuracy
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Extrapolate

Sup Class of Plot - Extrapolation
1961 Plot 1961Pad Ref-BPlot Ref"Pad"

Tree 1.9 3.9 17.1 29.3
Shrub 39.7 33.8 24.8 18.8
Herb 34 31.5 43.7 24.4
Bare 22.3 30.5 14.3 27.4

/] 0: Unclassfied

-7 1: Heb
= [ 2 Bare
o] 3 Tree
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Extrapolate

According to LPI...
1961 LPI 1961 Pad Ref-BLPI Ref"Pad"

Tree 0.7 3.9 15.0 29.3
Shrub 35.0 33.8 22.7 18.8
Herb 48.0 315 46.3 24.4
Bare 16.3 30.5 16.0 27.4

----- W [ Unclassified

-7 1: Heb
= [ 2 Bare
o] 3 Tree

- 4 Shnib



Extrapolating from

Vegetation Cover in
the LPI Plots to the
Entire Well Pad

e LPI cover does not
accurately predict
shrubs or bare ground

e Tree cover

e Underestimated
in reference sites

e Accurate on sites
with low tree
cover (<5%)

e (QOverestimates
herbaceous cover
e Distinguishing
litter
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Discussion

e Can we quantitatively monitor these sites using drone — collected
data? Yes

e Extrapolation
e Measure vs. inference

e Improvements to restoration




Advantages

e On-the-ground e Remote sensing:
 Accepted method * Can accurately
e Low Tech measure entire
. Species I.D. restoration area
e Historical record of
data
e More frequent
monitoring
e Time (2 Person Days
for All)

2 People x 1 Day

Tra d e—OffS e Mostly travel to &

from site
e On-the-ground e Remote sensing:
e Small area e Less accurate
e Time (1 Person species I.D.
Day / Plot) & e Equipment
expertise e Preparation &
e Preparation & planning

planning



Project Site Location

Project Background e [—

 Drone equipped with
MicaSense multispectral
sensor

* 50 hectares within the
Walter Walker State Wildlife
Area

e 110 meters

e ~7 cm pixel resolution

e 5 individual lenses

e 5 bands of data; red,
green, blue, red edge,
near IR




Objective

* Primary Objective: Can we accurately
identify key species using image
classifications of drone-collected
imagery?

* |f not, can we at least ID Functional Groups?
* Key Native Vegetation:

e Coyote Willow
e Cottonwood
[ ]
S h ru b http://southwestdesertflora.com/WebsiteFolders/Images/Salicaceae/Salix%20exigu
a,%20Narrowleaf%20Willow/4059Salix-exigua,-Narrowleaf-Willow700x464.jpg
e Herbaceous
[ ]

Wetland Vegetation

* Non-native Vegetation:
e Tamarisk
e Elm
* Russian olive
* Kochia

https://bcinvasives.ca/images/photos/_full/Salt_cedar003_SDewey_bugwood.org.jp
g




Methods

* Image pre-processing
* Clipped into sub-sets based on
functional type MO\ U A

Riparian

Wetland

e Riparian, , Wetland IO\ i
* 16 different clips | e

&l [ 100 vear Fioodpi
* Allowed for faster, smoother
image processing
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Methods

e Unsupervised
Classification

e Entire July Image
* No training data
e Class limit-6

e Supervised
classification

GPS Training Data

16 Individual
Classifications

Varying classes,
depending on species
present

Unsupervised Classification
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Results — Functional Groups

Accuracy of Image Classification

. % .
Functional Group T S H W 94% correctly classified

as tree
5% incorrectly classified
Tree 1_2: as shrub
a0 * 1% incorrectly classified
Shrub e as weedy species
* OQverall accuracy = 82.0%
Herbaceous

Weedy




Results — Individual Species

Accuracy of Image Classification

Individual Species cw EL WL T™M RO RB SD RD RS KC

Cottonwood

Elm

Willow

Tamarisk

Russian olive
Rabbitbrush
Sedge
Reed
Rush

Kochia

21-40

41-60

94% correctly classified as
elm

3% incorrectly classified as
cottonwood

3% incorrectly classified as
willow

Overall accuracy = 79.6%



Discussion

e 6/10 species: > 80% Accuracy

 What was species confused for?
e Functional Groups
* Native vs. Non-native

e Tamarisk vs. Willow
e 30% willow incorrectly classified
e 5% tamarisk incorrectly classified

e Cottonwood vs. EIm vs. Russian Olives
 Herbaceous understory

https://pfaf.org/user/Plant.aspx?LatinNam
e=Ulmus+pumila

https://santafebotanicalgarden.org/february-2017/




Discussion

e Constraints
e Size and time
* Expertise
e Knowledge/familiarity of site

e Experience with software
e ENVI
e eCognition — learning curve
GPS accuracy
» Post-differential correction: up to 5m error

http://www.ucy.ac.cy/artlands/en/equipment




Conclusion

e Benefits of Image Classification

Can significantly reduce field time
Permanent record of data

Greatly augments field data
Potential for large scale analyses

e Object — based
e Utilizes texture, brightness, area, shape, etc.
e Other literature

e Potential for...
e Qil & Gas restoration & monitoring

* Mining Reclamation
* Vegetation success
* Monitoring
e Water quality analyses
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