

Ecological Applications of Drone-collected Multispectral Image Analyses

Gray Koenemann

Department of Physical & Environmental Science,

Colorado Mesa University

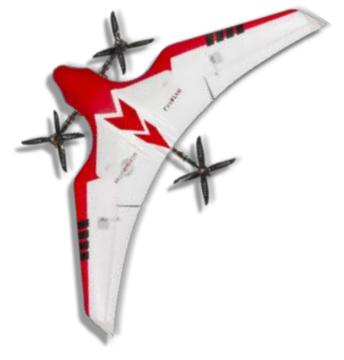
Grand Junction, CO

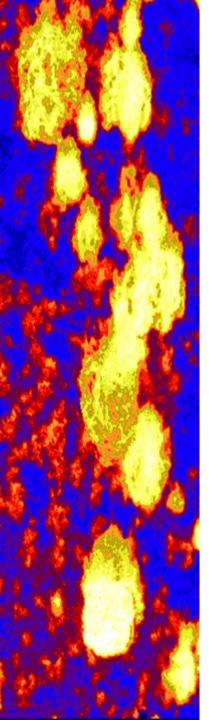
Alicia Langton, EcoloGIS

Richard Alward, Tamera Minnick, Colorado Mesa University

Unconventional Energy Center

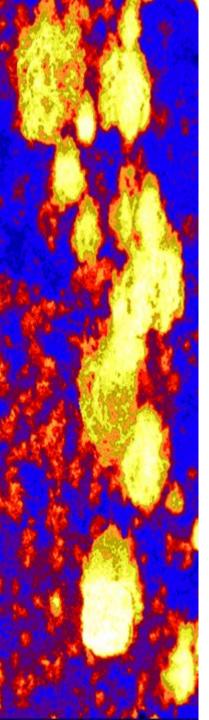
Bureau of Land Management, White River Field Office





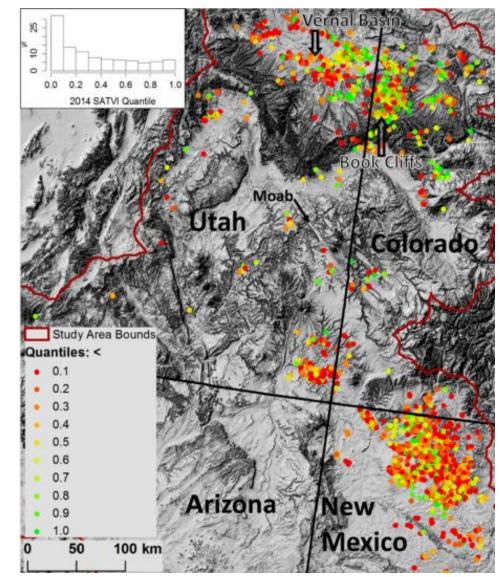
Outline

- Oil & Gas Restoration Monitoring Project
 - Challenges
 - Objectives
 - Methods
 - Results & Discussion
 - Conclusions/Evaluation
- Vegetation/Invasive Species Analysis Project
 - Site/Project background
 - Methods
 - Results & Discussion
 - Conclusions

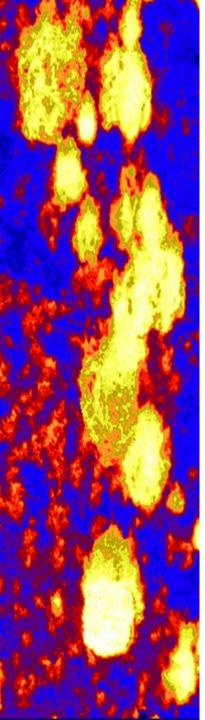


Challenges

- Oil & Gas development
- Well pad restoration
 - Pre-disturbed state
 - Native vegetation
 - Heterogeneity
 - Monitoring
 - Tens of thousands of sites
 - Traditional/on-the-ground methods
 - Expertise
 - Time
 - Limited season
 - Travel to site
 - Representative of entire well pad?
 - Satellite imagery
 - Availability
 - Frequency
 - Resolution
 - Landsat-8



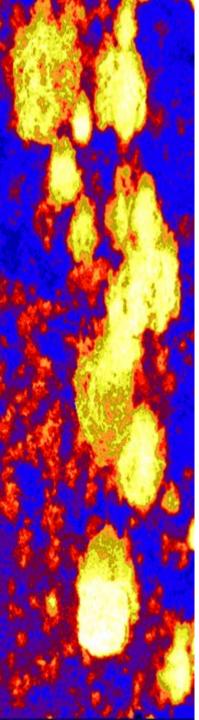
Nauman, T. W., Duniway, M. C., Villarreal M. L., and T. B. Poitras. 2007. Disturbance automated reference toolset (DART): Assessing patterns in ecological recovery from energy development on the Colorado Plateau. Science of the Total Environment 585: 476 – 88.



Objectives

- Primary Objective: Evaluate benefits/trade-offs
- Vegetative cover analysis
 - Functional Groups
 - Species I.D.

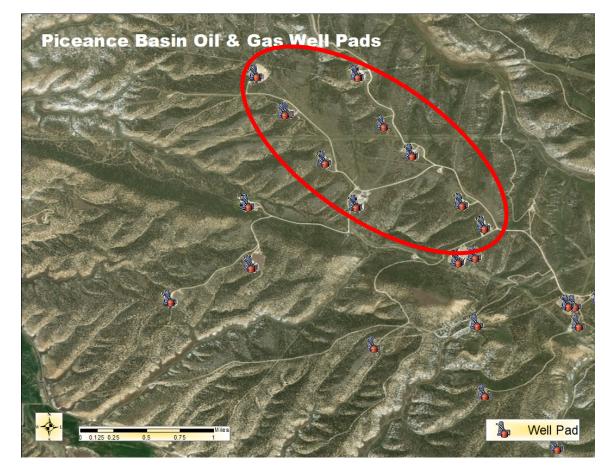
150 Meters



Methods: On-the-Ground

• Well pads

- Rio Blanco County, CO
- 1962 2008; abandoned or reclaimed
- 7 well pads
- 2 reference sites
- LPI Plots
 - 15 x 20m transects
 - 300 points
 - Area of "best" recovery chosen



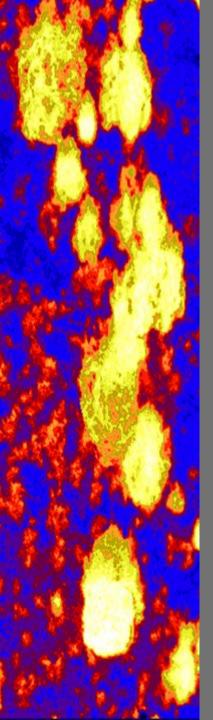
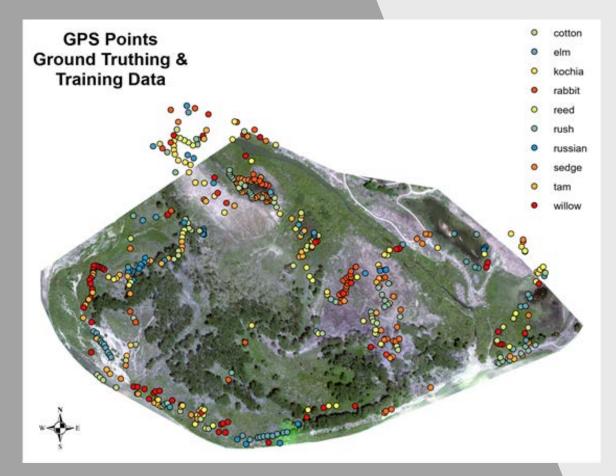
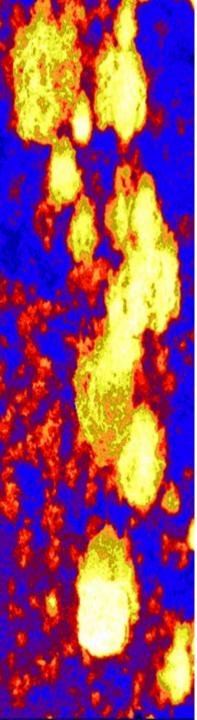


Image Analysis

- ENVI Image Analysis Software
- Pixel-based or "pixel-by-pixel"
- Image Classification
 - Unsupervised
 - Supervised
 - Training Data "ROI"s
 - GPS
 - General understanding of vegetation on site
 - Use only spectral data
 - Object-based
 - Algorithm Multiresolution segmentation/Feature extraction
 - Meaningful "Image Objects"
 - Texture, Shape, Area, Brightness, etc.





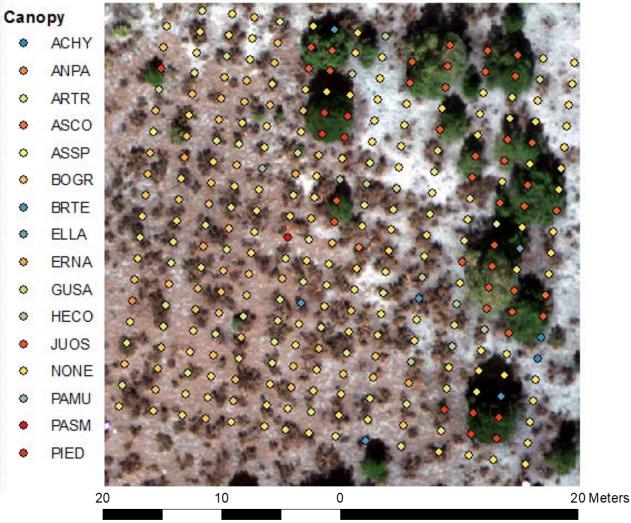
Methods: Remote Sensing

- Drone mounted camera MicaSense Red Edge Sensor
 - 5 Bands (R,G,B,RE,NIR)
 - Average 5cm resolution (~160,000 Pixels / LPI Plot)
 - Landsat: Average 30m resolution (~1 Pixel / LPI Plot)

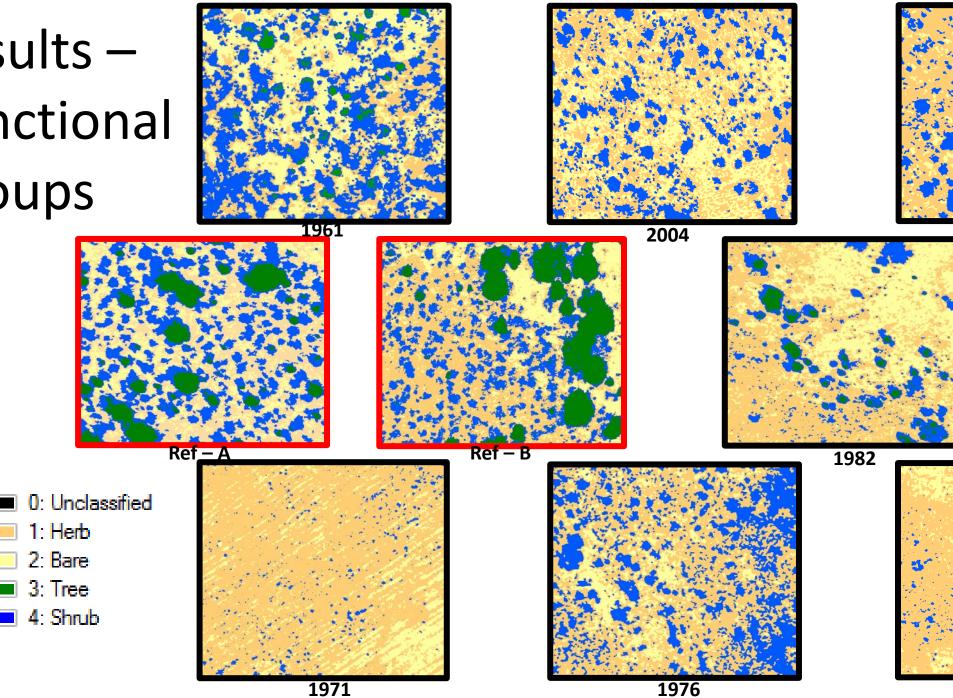
• Supervised Classification - ENVI

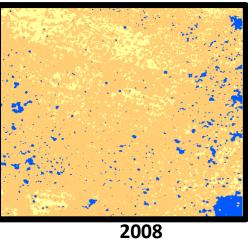
- Created training data
 - LPI Grid
 - 5 Bands
 - Indices
 - OSAVI
 - NDVI
 - CIR (False Color)
- Extrapolation to well pad

Plot 5 LPI Grid

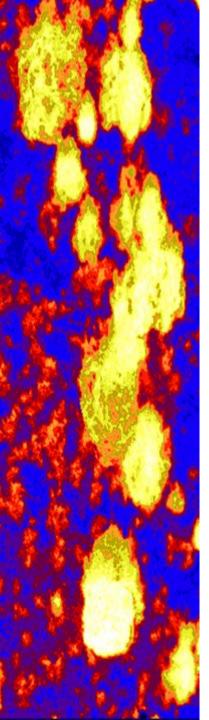


Results – Functional Groups



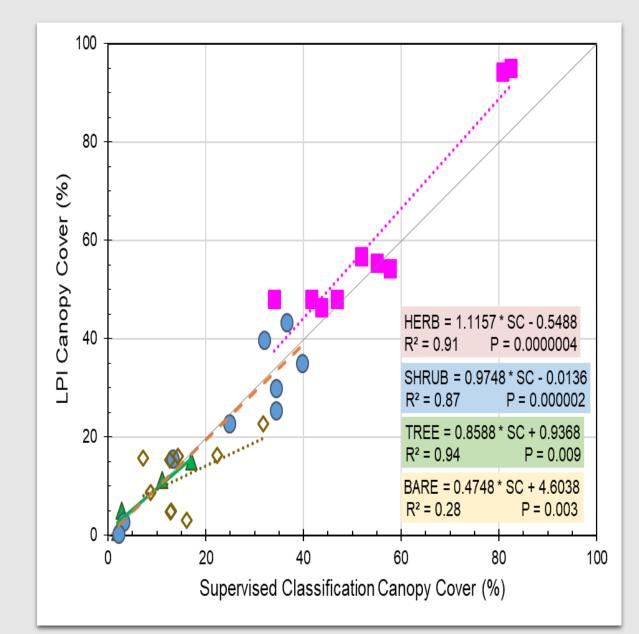


2000



Functional Groups: Supervised Classification Cover Predicts LPI Cover

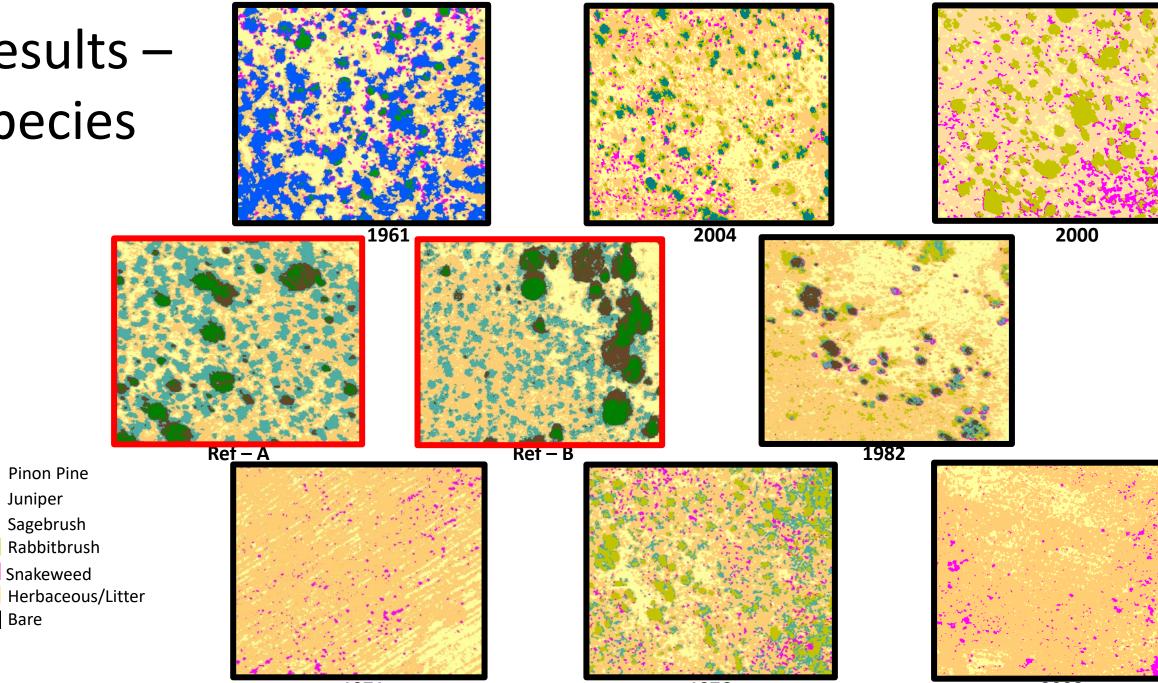
- Accurately I.D. functional groups
 - Trees (r² = 0.94)
 - Shrubs (r² = 0.87)
 - Herbaceous (r² = 0.91)
 - Differentiating litter and Herbaceous cover (August Images)
 - Bare ground

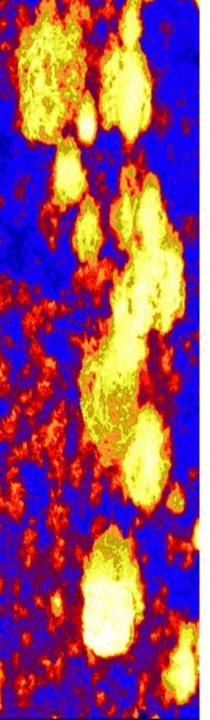


Results – Species

Juniper

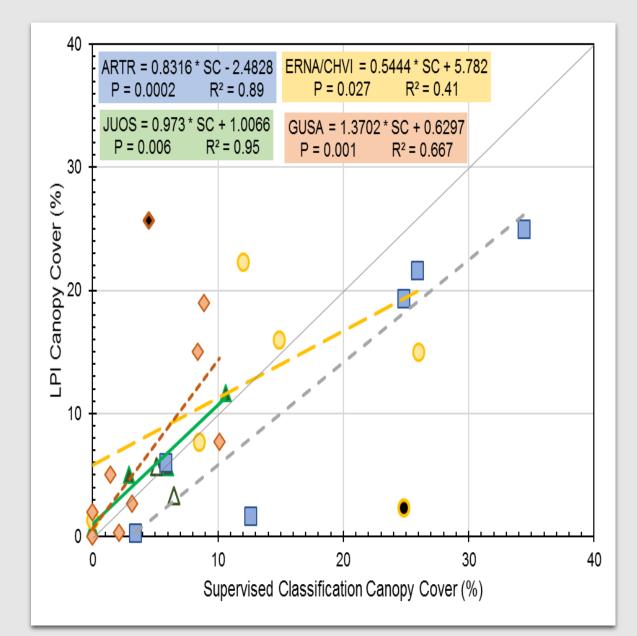
Bare





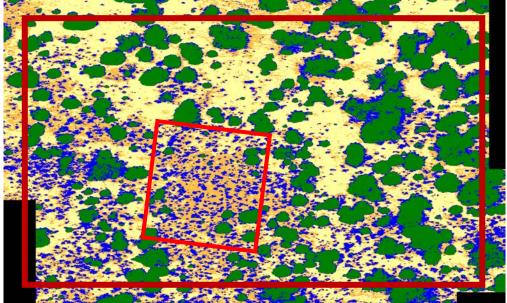
Species: Supervised Classification Cover Predicts LPI Cover

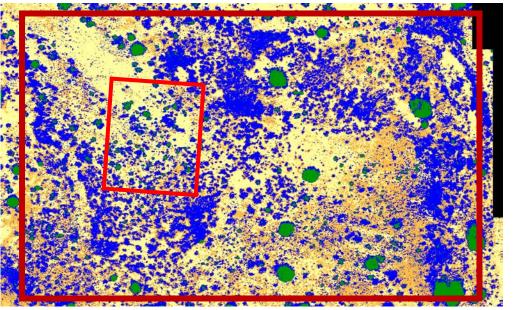
- Species I.D. w/ less accuracy
 - Juniper
 - Pinon Pine
 - Big Sagebrush
 - Snakeweed
 - Yellow Rabbitbrush & Rubber Rabbitbrush

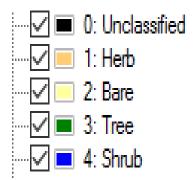


Extrapolate Sup Class of Plot - Extrapolation

	1961 Plot	1961 Pad	Ref - B Plot	Ref "Pad"
Tree	1.9	3.9	17.1	29.3
Shrub	39.7	33.8	24.8	18.8
Herb	34	31.5	43.7	24.4
Bare	22.3	30.5	14.3	27.4

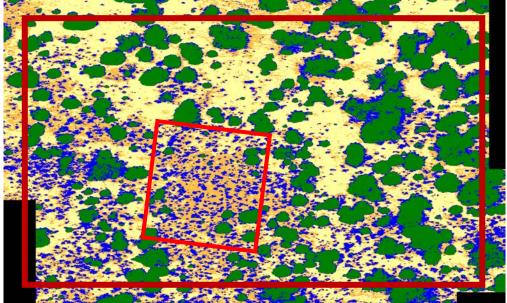




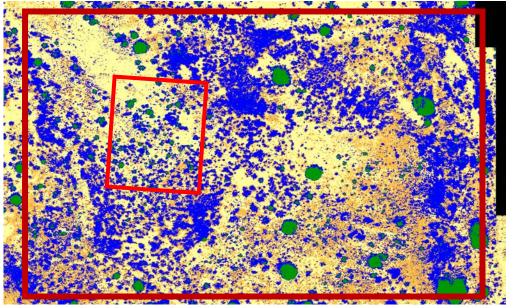


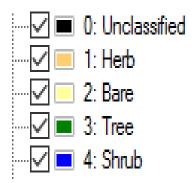
Extrapolate According to LPI...

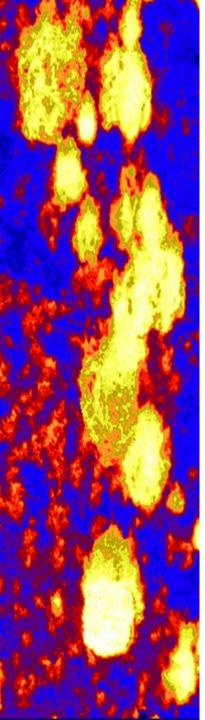
	1961 LPI	1961 Pad	Ref - B LPI	Ref "Pad"
Tree	0.7	3.9	15.0	29.3
Shrub	35.0	33.8	22.7	18.8
Herb	48.0	31.5	46.3	24.4
Bare	16.3	30.5	16.0	27.4



Ref - B

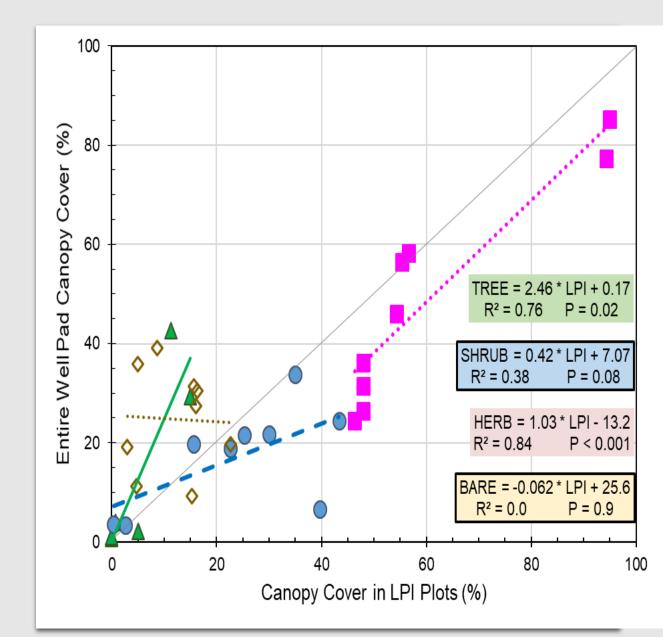


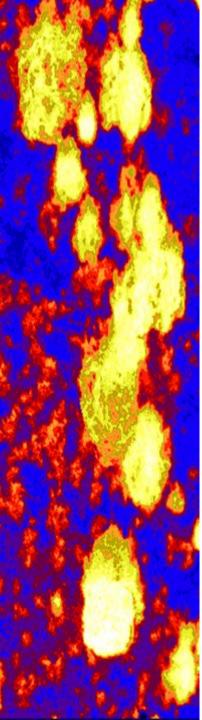




Extrapolating from Vegetation Cover in the LPI Plots to the Entire Well Pad

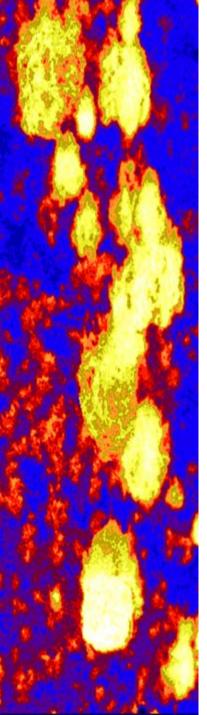
- LPI cover does not accurately predict shrubs or bare ground
- Tree cover
 - Underestimated in reference sites
 - Accurate on sites with low tree cover (<5%)
- Overestimates herbaceous cover
 - Distinguishing litter





Discussion

- Can we quantitatively monitor these sites using drone collected data? Yes
- Extrapolation
 - Measure vs. inference
- Improvements to restoration



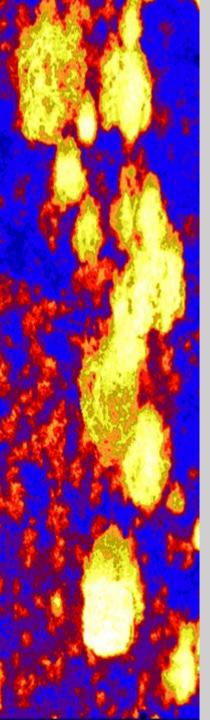
Advantages

- On-the-ground
 - Accepted method
 - Low Tech
 - Species I.D.

Trade-offs

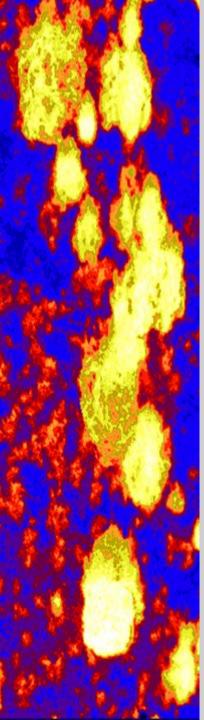
- On-the-ground
 - Small area
 - Time (1 Person Day / Plot) & expertise
 - Preparation & planning

- Remote sensing:
 - Can accurately measure entire restoration area
 - Historical record of data
 - More frequent monitoring
 - Time (2 Person Days for All)
 - 2 People x 1 Day
 - Mostly travel to & from site
- Remote sensing:
 - Less accurate
 - species I.D.
 - Equipment
 - Preparation &
 - planning



Project Background

- Drone equipped with MicaSense multispectral sensor
 - 50 hectares within the Walter Walker State Wildlife Area
 - 110 meters
 - ~7 cm pixel resolution
 - 5 individual lenses
 - 5 bands of data; red, green, blue, red edge, near IR



Objective

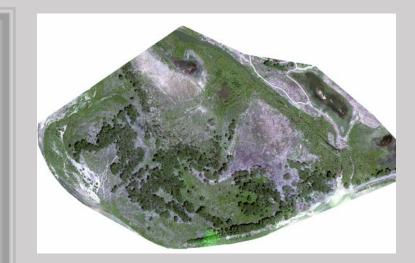
- Primary Objective: Can we accurately identify key species using image classifications of drone-collected imagery?
- If not, can we at least ID Functional Groups?
 - Key Native Vegetation:
 - Coyote Willow
 - Cottonwood
 - Shrub
 - Herbaceous
 - Wetland Vegetation
 - Non-native Vegetation:
 - Tamarisk
 - Elm
 - Russian olive
 - Kochia

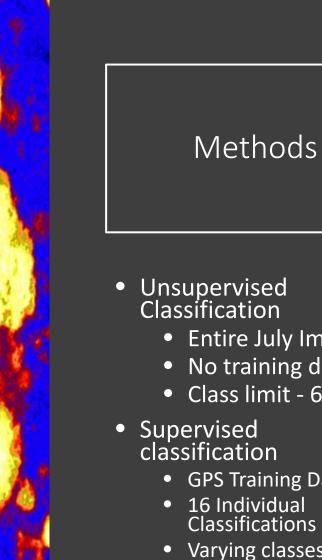
http://southwest desert flora.com/WebsiteFolders/Images/Salicaceae/Salix%20exigua,%20Narrowleaf%20Willow/4059Salix-exigua,-Narrowleaf-Willow700x464.jpg

https://bcinvasives.ca/images/photos/_full/Salt_cedar003_SDewey_bugwood.org.jp g

Methods

- Image pre-processing
 - Clipped into sub-sets based on functional type
 - Riparian, Upland, Wetland
 - 16 different clips
 - Allowed for faster, smoother image processing



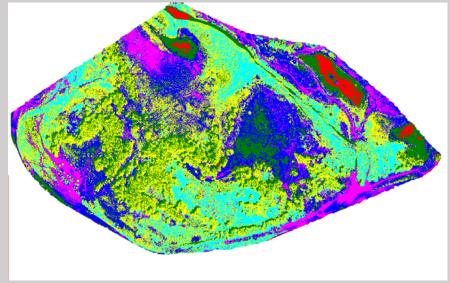


Varying classes, depending on species present

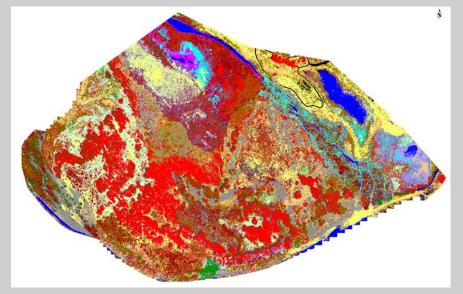
Methods

- Entire July Image
- No training data
- Class limit 6
- GPS Training Data

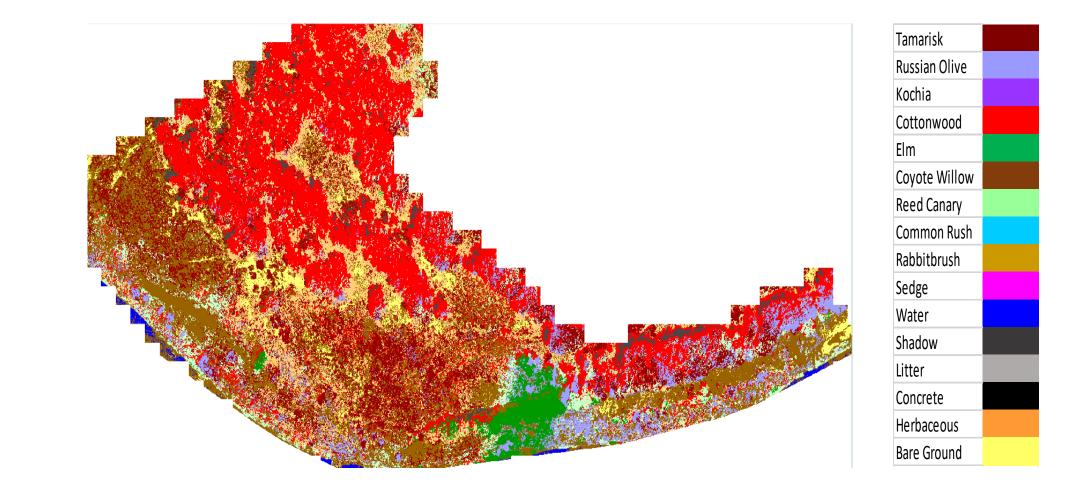
Unsupervised Classification



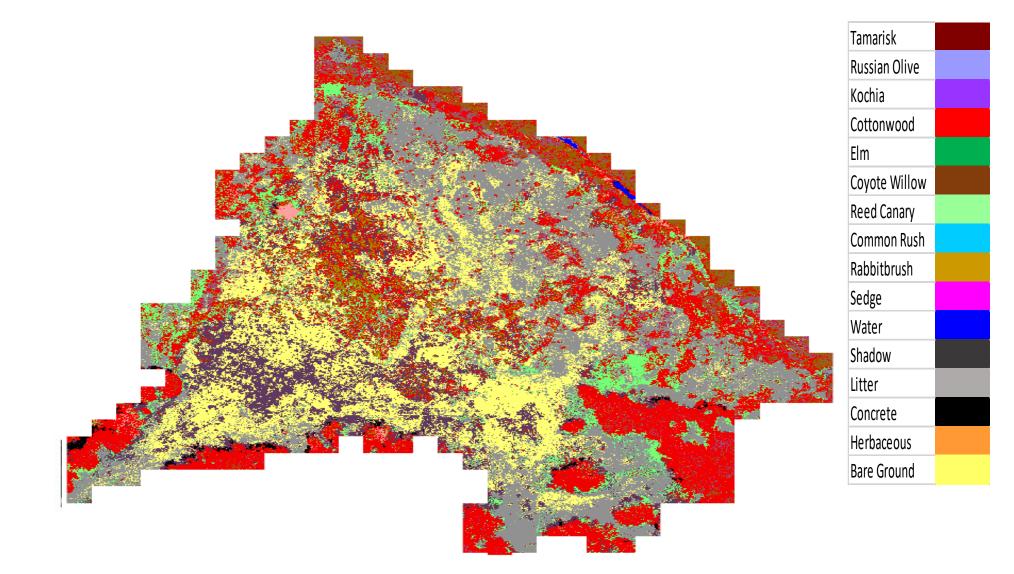
Supervised Classification



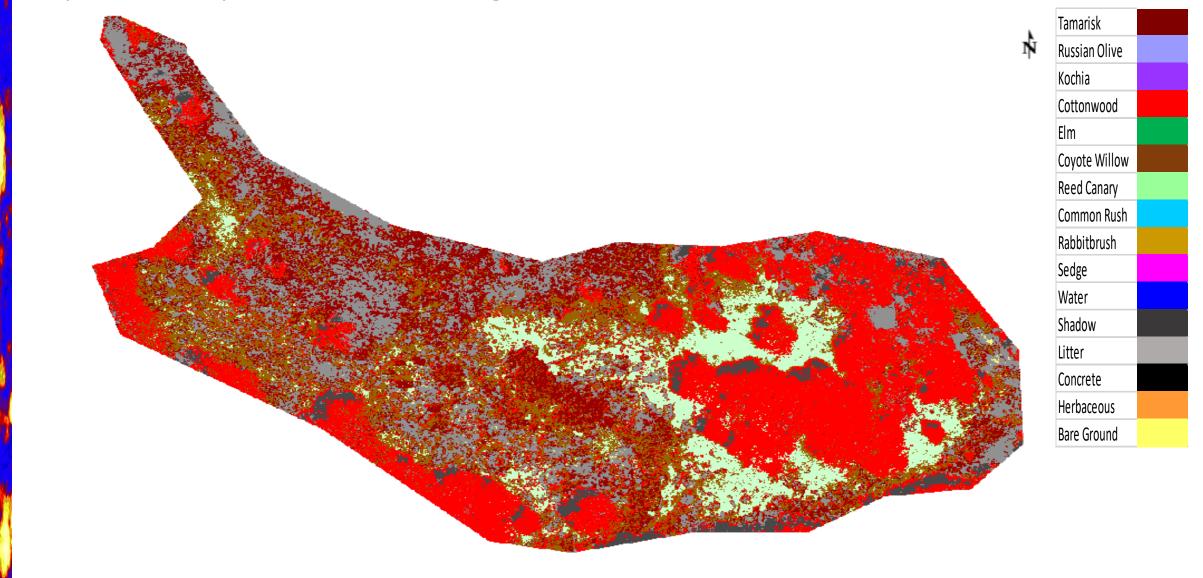
Supervised pixel-based image classification - Riparian

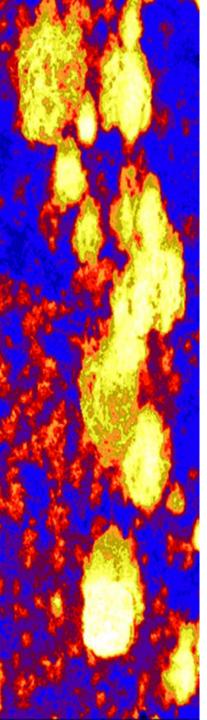


Supervised pixel-based image classification - Upland



Supervised pixel-based image classification - Wetland



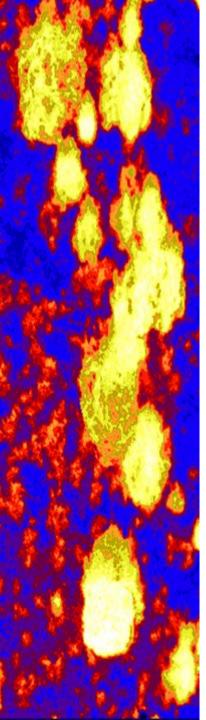


Results – Functional Groups

Accuracy of Image Classification

Functional Group	Т	S	Н	W	
Tree	94	4	2	9	0 1-20
Shrub	5	73	5	8	21-40 41-60
Herbaceous	0	5	88	7	61-80 81-100
Weedy	1	18	5	76	

- 94% correctly classified as tree
- 5% incorrectly classified as shrub
- 1% incorrectly classified as weedy species
- Overall accuracy = 82.0%

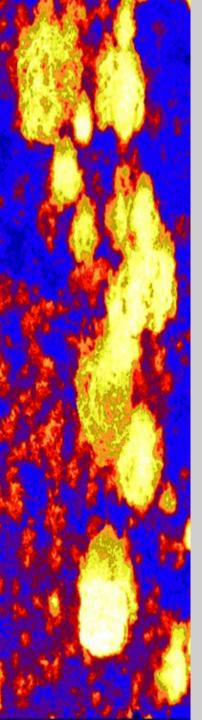


Results – Individual Species

Accuracy of Image Classification

Individual Species	CW	EL	WL	ТМ	RO	RB	SD	RD	RS	КС	
Cottonwood	85	3	0	5	10	10	0	7	4	8	
Elm	8	94	0	0	7	0	0	0	0	0	
Willow	4	3	68	5	3	0	0	13	4	4	0
Tamarisk	4	0	30	83	3	3	0	7	0	0	1-20
Russian olive	0	0	0	3	73	0	0	0	4	0	21-40 41-60
Rabbitbrush	0	0	0	3	0	87	0	0	0	8	61-80
Sedge	0	0	0	0	0	0	97	0	8	0	81-100
Reed	0	0	0	0	3	0	0	63	0	12	
Rush	0	0	2	0	0	0	3	3	81	0	
Kochia	0	0	0	3	0	0	0	7	0	68	

- 94% correctly classified as elm
- 3% incorrectly classified as cottonwood
- 3% incorrectly classified as willow
- Overall accuracy = 79.6%



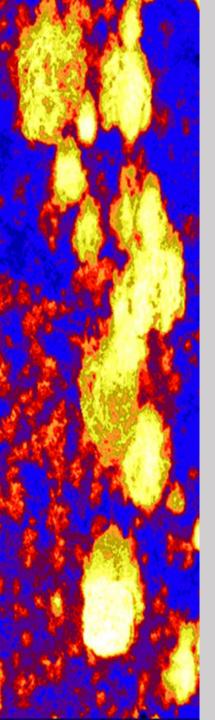
Discussion

- 6/10 species: > 80% Accuracy
- What was species confused for?
 - Functional Groups
 - Native vs. Non-native
- Tamarisk vs. Willow
 - 30% willow incorrectly classified
 - 5% tamarisk incorrectly classified
- Cottonwood vs. Elm vs. Russian Olives
 - Herbaceous understory

http://www.robinsonlibrary.com/science/botany/angiosperms/salicaceae/cottonwood.htm

https://pfaf.org/user/Plant.aspx?LatinNam e=Ulmus+pumila

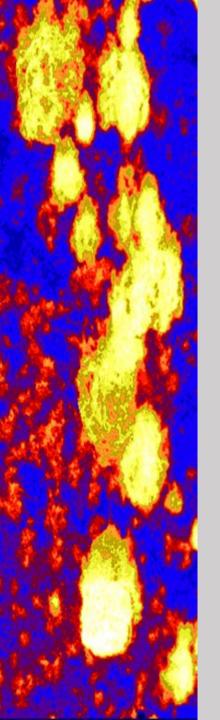
https://santafebotanicalgarden.org/february-2017,



Discussion

- Constraints
 - Size and time
 - Expertise
 - Knowledge/familiarity of site
 - Experience with software
 - ENVI
 - eCognition learning curve
 - GPS accuracy
 - Post-differential correction: up to 5m error

http://www.ucy.ac.cy/artlands/en/equipment



Conclusion

- Benefits of Image Classification
 - Can significantly reduce field time
 - Permanent record of data
 - Greatly augments field data
 - Potential for large scale analyses
- Object based
 - Utilizes texture, brightness, area, shape, etc.
 - Other literature
- Potential for...
 - Oil & Gas restoration & monitoring
 - Mining Reclamation
 - Vegetation success
 - Monitoring
 - Water quality analyses

Acknowledgements

- Co-authors: Alicia Langton, EcoloGIS; 'Richard Alward & Tamera Minnick, Colorado Mesa University
- Colleagues: Quinton Barnett & Emily Tighe

Ecological Applications of Drone-collected Multispectral Image Analyses

Gray Koenemann, Undergraduate,

Department Physical & Environmental Sciences,

Colorado Mesa University

koenemanng@gmail.com

Unconventional Energy Center

Bureau of Land Management, Rio Blanco County, CO

