THE INFLUENCE HERBACEOUS VEGETATION ON ECTOMYCORRHIZAL ROOT COLONIZATION AND NUTRIENT UPTAKE

J. M. Bauman¹, M. Fergus¹, and J.A. Franklin²

Mycorrhizal Fungi

Mutualistic to both:

- Plant receives water and nutrients
- Fungi receives ecological niche and carbohydrates

Endomycorrhizae

Prolific in natural systems

Two Distinct Types:

- 1. Endomycorrhizae
- 2. Ectomycorrhizae

Ectomycorrhizae (ECM)

Beneficial Attributes:

- Greater access to water and nutrients
- Tolerance of heavy metals
- Protection from disease
- Provides networks to established trees

Marx 1972; Simard et al. 1996; Cairney and Chambers 1997; Walker et el. 2004; Nara 2005; Bauman et al. 2012

Photo credit: Smith and Read 1997

Coal Mine Reclamation in Appalachian

Forestry Reclamation Approach:

- Appropriate substrate
- Loose soils
- Proper ground cover
- Proper planting methods using a valuable tree species

Angel et al. 2005; Burger et al. 2005; Groninger et al. 2007; Zipper et al. 2011; Franklin et al. 2012

American Chestnut in Restoration

American chestnut is an ECM tree host, therefore, it is important to create a planting environment for both the tree and its fungal symbiont

Former Surface Mine Land

Field Testing Planting Methods

Primary groundcover after 5 years

Species name	Common Name	% Cover
Poa pratensis L.	Kentucky Bluegrass	23.2
<i>Lespedeza cuneata</i> (Dumont) G. Don	Chinese Lespedeza	16.3
Solidago canadensis L.	Canada Golden Rod	10.8
Rudbeckia hirta L.	Black Eyed Susan	10.7
<i>Festuca arundinacea</i> Schreb.	Tall Fescue	6.5
Achillea millefolium L.	Yarrow	4.1

- 34 species were documented across treatments this study
- Five plant species made up 70% of the vegetation sampled
- The two most abundant herbaceous plants were reclamation species
- No difference in vegetation across treatment plots
- One very interesting plant found in vegetation sample...

Five-year-old chestnut hybrids

Chestnut Height (m) After 10 Years

than the hybrids (3.1 m; F= 3.01, *P* = 0.03).

ECM Survey Methods

Seedlings were sampled non-destructively by trenching dormant trees, morphotyped and fungal DNA was sequenced

Field Sample

Quantify

Describe and Voucher

Methods: Metals in Soils

Element analyzed n	Drip line ean (ppm)	Drip line 95% CI	Site reference	County ave (ppm)	Ohio soil (ppm)
Ag	0.45	[0.30, 0.74]	0.24	<1	0.25
Al	11,172	[9,909, 13,261]	9983.4	NA	7,685
As	10.62**	[8.68, 11.07]	12.78	7.9	5.72
Cd	0.21**	[0.13, 0.24]	0.27	0.2	0.507
Cu	26.0	[21.60, 32.25]	23.38	16	12
Mn	767.84	[644.5, 915.7]	732.68	459	459
Pb	14.37	[12.70, 15.94]	14.54	28	16.2
Se	3.55*	[2.05, 4.25]	4.71	0.3	0.25
Zn	75.07	[64.35, 92.0]	66.18	65	42.7

Mean concentrations of metals in drip line soils compared with average background metal concentration in county and state soils

Methods: Metals in Tissue

Chestnut foliage (ppm)	95% CI	Chestnut floral (ppm)	95% CI	Range in plant tissues
0.15	[0.06, 0.24]	0.11	[0, 0.22]	0.05-1.5
74.83	[58.96, 90.71]	41.70	[17.47, 65.90]	30-250
BDL	_	BDL	_	0.009-1.5
BDL	_	BDL	—	0.1-2.4
0.91	[-0.5, 2.34]	23.90	[14.35, 33.38]	4-15
965.18	[823.7, 1106.7]	662.08	[544.75, 779.41]	20-400
0.48	[0-0.97]	0.37	[-0.21, 0.95]	0.1-10
2.48	[1.36, 3.6]	7.12	[5.50, 8.74]	<10
64.79	[29.19, 100.39]	58.0	[14.51, 101.39]	27-100

Mean concentrations of metals in foliage, flowers, and nuts of chestnuts and compared with ranges of metals in plant tissue (ppm) as reported in the literature

ECM Morphotypes

= 1 mm

Community Composition Among Years

ECM on 2-yr-old	%	ECM on 6 -yr-old	%
Hebeloma sp.1	31	Cortinarius sp. 1	44
Hebeloma sp. 2	20	Cenococcum sp.	20
Cortinarius sp. 1	16	Cortinarius sp. 3	10
Scleroderma sp. 1	9	Scleroderma sp. 1	6
Thelephora sp.	7	Cortinarius sp. 4	4
Unknown ECM 2	4	<i>Russula</i> sp.	3
Hebeloma sp. 3	3	Scleroderma sp. 2	3
Laccaria sp.	3	Thelephora sp.	2
Unknown ECM 1	2	Inocybe sp.	2
Scleroderma sp. 2	1	Cortinarius sp. 2	2
Cortinarius sp. 2	1	Unknown 1	1
Pisolithus sp.	1	<i>Sebacinales</i> sp.	<1
<i>Tomentella</i> sp.	< 1	Laccaria sp	< 1
Cenococcum sp.	< 1	<i>Tomentella</i> sp.	< 1
Thelephoraceae	< 1	Lactarius sp.	< 1
•		Cantherellaceae	<1
Average Root	44%	Average Root	58%
Colonization		Colonization	

Community Composition Among Years

ECM on 2-yr-old	%	ECM on 6 -yr-old	%
Hebeloma sp.1	31	Cortinarius sp. 1	4 4
Hebeloma sp. 2	20	Cenococcum sp.	20
Cortinarius sp. 1	16	Cortinarius sp. 3	10
Scleroderma sp. 1	9	Scleroderma sp. 1	6
Thelephora sp.	7	Cortinarius sp. 4	4
Unknown ECM 2	4	Russula sp.	3
Hebeloma sp. 3	3	Scleroderma sp. 2	3
Laccaria sp.	3	Thelephora sp.	2
Unknown ECM 1	2	Inocybe sp.	2
Scleroderma sp. 2	1	<i>Cortinarius</i> sp. 2	2
<i>Cortinarius</i> sp. 2	1	Unknown 1	1
Pisolithus sp.	1	Sebacinales sp.	<1
<i>Tomentella</i> sp.	<1	Laccaria sp	<1
Cenococcum sp.	<1	<i>Tomentella</i> sp.	<1
Thelephoraceae	<1	Lactarius sp.	< 1
I		Cantherellaceae	< 1
Average Root	44%	Average Root	58%
Colonization		Colonization	2070

DNA sequencing confirmed 22 sequences and ECM colonization increases over time

Plant and ECM Interactions

It is not clear whether ECM activity was the driver of plant growth, or if growth contributed to ECM colonization. **Both are strong indicators of healthy tree establishment.**

Micronutrients and Metals in Tissue

Metals in normal to low levels, nut tissue safe for consumption

Nutrient Dynamics and ECM

Of the metals, % ECM on roots was significantly correlated to aluminum

% ECM Root Colonization

Macronutrients

A positive correlation existed between *Cortinarius* ECM colonization and foliar nitrogen in seedling tissue

Eastern Tennessee- Site Differences

Low Groundcover diversity Medium groundcover diversity High groundcover diversity

The objective of this study is to investigate the plant cover communities' influence on ECM root colonization, species composition and nutrient uptake

Eastern Tennessee- Site Differences

Reclamation Methods:

These sites were reclaimed in 2009 using end-dumping

2016-2017 - ECM, soil nutrient and metal analysis was the same as the Ohio study

Comparing ECM and Growth

ECM colonization did not differ among sites

However, chestnut growth was higher in the low diverse groundcover plots

Plant species richness of groundcover

ECM Colonization and Species Richness

There were more ECM species in the plots with medium groundcover species, when compared to plots with higher groundcover species

Code	ECM Genus species	Proportion
Cen	Cenococcum geophilum	39.3
Cort1	Cortinarius decipiens	13.4
Cort2	Cortinarius vernus	1.7
Cort3	Cortinarius balaustinus	8.0
Cort4	Cortinarius sp.	0.2
Heb1	Hebeloma arenosum	0.6
Heb2	Hebeloma vaccinum	8.7
Helo	Helotiaceae	1.6
Ino1	Inocybe cincinnata	0.3
Ino2	Inocybe leucoloma	3.1
Ino3	Inocybe malenconii	0.2
Pis	Pisolithus arhizus	1.0
Rus	Russula pectinatoides	2.0
Scl	Scleroderma areolatum	3.6
Thel	Thelephora terrestris	0.3
Tom	Tomentella	3.5
Tuber	Tuber canaliculatum	1.6
UNK1	Unknown ECM 1	1.8
UNK2	Unknown ECM 2	7.1
UNK3	Unknown ECM 3	2.0

20 ECM sequences

Dominant ECM Species

Cenococcum sp. significantly abundant in the plots with higher groundcover species diversity ($F_{(2,9)} = 4.94$, P= 0.03)

ECM Community Composition per Site

NMDS1

Site variables that were correlated to ECM Community

NMDS1

Site variables that were correlated to ECM Community

NMDS1

Plant species influencing site

NMDS1

Dominant Plant Species per Site

As Lespedeza cover increased in the plots, groundcover species richness decreased

Comparing Growth and Lespedeza

Chestnut growth increases with Lespedeza

As Lespedeza increases, plant species richness decreases

Plant species richness of groundcover

Metals in Leaf Tissue

Aluminum

Copper

Manganese

Plant species richness of groundcover

Metals in low levels with nut tissue safe for consumption

Conclusion

Chestnut had similar abundant ECM, however, *Cortinarius* was most abundant in the Ohio site that was reclaimed by ripping, where *Cenococcum* was most abundant in Tennessee, where sites were end-dumped, and most abundant on the driest site

- ECM selected by the most limiting resource?

When compaction is mitigated or avoided, Lespedeza may produce shade that reduces temperature, add organic matter, and enrich soils that facilitate seedling growth. Current work is analyzing N uptake by the tree.

> -Is there an ECM species that chestnut shares with Lespedeza that could further facilitate chestnut's growth on reclaimed sites?

