

Bureau of Abandoned Mine Reclamation

Reducing Fresh Water Consumption in Hydraulic Fracturing by using Acid Mine Drainage as a Make-up Fluid Eric E. Cavazza, P.E., Richard Beam, P.G., and Michael Cavazza

33RD Annual Meeting of the American Society of Mining & Reclamation (ASMR) June 4-9, 2016 Spokane, Washington

Limits of Marcellus Shale and AMD Impacted Streams in Pennsylvania

AMD/AML Impaired Streams

Marcellus Well – Westmoreland County PA

Aerial View of Hydraulic Fracturing Operation

Why is AMD not used?

- AMD Sulfate concentration usually >100 mg/L
- Will react with dissolved metals in well and form scale

Flowback

- Flowback is water that is produced within the first 30 days of production
- Contains high amounts of dissolved metals such as Barium and Strontium
- Companies would prefer to recycle this fluid for future wells

Can Two Negatives Result in Positive?

- (-) AMD has high sulfate concentration
- (-) Recycling flowback requires barium and strontium to be removed
- (+) Mix fluids to precipitate Barite and Celestite on surface

$$BaSO_4(s) \longleftrightarrow Ba^{2+} + SO_4^{2-} \qquad k_{eq}(-8.43)$$

 $SrSO_4(s) \longleftrightarrow Sr^{2+} + SO_4^{2-}$

 $k_{eq}(-5.17)$

Hypotheses

 Could mine drainage from abandoned mines be used as the make-up fluid as opposed to using freshwater sources?

- By mixing mine drainage with gas well flowback water could beneficial reactions be promoted which could make the flowback more suitable for recycling and less costly than by mixing it with freshwater?

Marcellus Shale Wells Drilled in Pennsylvania (As of May 16, 2016)

C Vein Discharge – Sullivan County

Tanoma Discharge – Indiana County

Ernest Discharge – Indiana County

Crabtree Discharge – Westmoreland County

Clyde Discharge – Washington County

Field Sampling and Characterization of AMD and Flowback Waters

- Field determinations of pH, Eh, Temp, Alkalinity and measured flows were obtained at all the AMD discharge sites
- The AMD discharges and flowback wells were sampled and sent to the PA DEP lab in Harrisburg, PA for analysis
- Total and dissolved analysis of all major cations, anions and trace elements associated with both mine drainage and flowback were performed

Parameter	Analysis Method	Test Method
pH, Alkalinity	Titration	SM 4500 H-B, SM 2320B
Chloride, Sulfate	Colorimetric	SM 4500 CL-E, EPA 375.2
Bromide	IC	EPA 300
All other Metals	ICPMS	EPA 200.7

AMD Site Variability

Site	Date	Flow	рН	Alkalinity	Al - D	Ca - D	Fe - D	Mg - D	Mn - D	Na - T	Sulfate	Charge
		gpm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Balance
	Apr-15	7386	6.4	141.6	0.369	165	60.9	46.8	2.04	120	615	5.19%
Crabtree	Nov-15	2695	6.4	162.2	0.355	163	59.9	51.5	2.25	109	602	2.08%
Discharge	Jan-16	4874	6.6	149.4	0.313	141	49.3	45.6	2.13	90.3	673.8	8.90%
	Apr-16	3798	6.2	171.8	0.365	152	55.4	47.2	1.93	104	628.5	
Clyde	Oct-15	1000	6.3	335	0.2	301.2	0.03	107.8	2.37	1860	3873	3.36%
Treated	Dec-15	1000	6.6	308.6	0.1	275	0.32	106	2.79	1889	3516	0.86%
Effluent	Jan-16	1000	6.6	325.2	0.1	264	0.02	97.9	2.45	1640	3801	13.10%
Ennet	Apr-15	1764	5.5	20	2.11	101	12.5	23.8	1.92	87.5	448	0.21%
Discharge	Nov-15	1048	5.8	29.2	1.06	120	14.2	26.8	2.08	105	521.7	0.04%
Discharge	Jan-16	1173	5.4	6.4	1.86	99.5	10.61	23.0	2.023	82.3	588.8	10.93%
Falls Creek	May-15	350	4.0	0	7.33	27	0.93	16.3	4.07	0.77	175	2.36%
Effluent	Nov-15	52	4.2	0	12.05	34.4	1.54	20.3	5.61	0.967	222.3	5.10%
B Vein	May-15	200	7.7	50	0.046	28.3	0.02	6.1	0.11	2.66	53.2	7.76%
Effluent	Nov-15	75	7.4	30	0.079	21.7	0.02	7.4	0.09	3.8	73.3	8.98%

- Site specific seasonal variations in both flow and chemistry
- Regional quality differences Anthracite vs. Bituminous sites
- Mine pool hydrology flooded vs free draining
- Time since mining completion

AMD Site Variability

AMD Site Temporal Changes – Clyde Mine Pool

Date	рН	Alkalinity	Acidity	Fe	Mn	Al	Sulfate
1/24/2000	6.4	500	154	>300	8.47	0.56	6,085
5/15/2002	6.4	514	- 42	248	4.61	0.48	5,400
6/21/2005	6.3	519	- 23	213	4.32	< 0.2	4,350
1/6/2011	6.4	520	- 203	194	3.34	< 0.2	4,010
10/6/2014	6.4	550	-200	190	3.5	<0.2	4,000
5/15/2015	6.6	510	-240	154	2.6	<0.2	3,989
1/19/2016	6.6	520	-260	148	2.6	<0.2	3,593

All values except pH expressed as mg/l

• From 2000 to 2016

- ~ 50 percent reduction in dissolved iron
- ~ 70 percent reduction in dissolved manganese
- ~ 40 percent reduction sulfate

Early and Late Flowback Characterization

Location	рН	Alk.	Na ⁺	Ca ²⁺	Mg^{2+}	Ba ²⁺	Sr ²⁺	Fe	Cl⁻	SO 4 ²⁻
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Well 1 (Day 2)	6.2	256	24790	6204	626	3040	1400	120	56025	262
Well 2 (Day 1)	6.4	63	35400	13300	1308	540	1980	42	91939	78
Well 1 (Day 30)	6.1	218	25880	8244	841	4590	1800	198	60357	ND
Well 2 (Day 29)	6.2	86	39500	15400	1616	728	3290	55	103061	ND

Flowback Water Chemistry

												Charge
Site	Date	pН	Alkalinity	Ba - D	Br - T	Ca - D	Mg - D	Na - T	Sr - D	Sulfate	Cl - T	Balance
			mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	(+) (-)
Southwest PA	9/24/2015	6.2	255.8	3040	515	6204	626.2	24790	1400	262.2	56024.9	2.77%
Well 1 Day 2	2/22/2016	6.2	238.4	2590	443	5204	568.8	23020	1230	64.1	53272.6	
Southwest PA	10/22/2015	6.1	218.2	4590	576	8244	841.4	25880	1980	20	60356.7	0.04%
Well 1 Day 30	2/22/2016	6.1	213.8	3990	551	7145	790.9	24870	1720	20	65483.6	4.61%
Southwest PA	10/6/2015	6.4	62.8	539.7	871	13300	1308	35400	2630	78	91939	5.33%
Well 2 Day 1	2/22/2016	6.1	33.8	450.7	837	12590	1204	31060	2410	20	92356.6	
Southwest PA	11/2/2015	6.2	86.2	728	1057	15400	1616	39500	3320	20	103061	4.61%
Well 2 Day 29	2/22/2016	5.6	6.8	710	1018	13540	1478	37880	3110	20	114360	10.70%

- Flowback samples were re-analyzed after ~ 5 months hold time
 - Sulfate present in early flowback samples has precipitated
 - Significant changes in dissolved Ba, Br, Ca, Fe, Mg, Sr and total alkalinity

NORM Sampling

- Analysis reported as radioactivity units (pCi/L)
- Transformed to mass units by applying Specific Activity conversion formula

Flowback	Ra-228	Ra-226
(Late Time)	(pCi/L)	(pCi/L)
Well 1	31.5	883
Well 2	15.6	1,012
Method		Parameters
Brooks and Blancha	urd	Radium 228
EPA 903.1		Radium 226

- Well 1 example: Ra ²²⁶ = 883 pCi/L would equate to a concentration of 8.92x10⁻⁷ mg/l
- Radium Sulfate formation would not be observable through analyzing changes in sulfate concentration

Mixing Test Objectives

- Setting up mix tests
 - Normalized mixes to a ratios of (SO₄: Ba+Sr) = 1:1
 - This means that there is just enough sulfate to react with all barium and strontium in mix

- Measure Removal Efficiency
 - The goal was to remove 100% of the barium, strontium and sulfate

Setting up Mixes

	Mixture	Ratio	% AMD	% Flowback
Discharge	Well	(SO ₄ :Ba+Sr)	in mix	in mix
Clyde	Well 1 (E)	0.98	49%	51%
Clyde	Well 2 (E)	0.93	46%	54%
Clyde	Well 1 (L)	1.24	61%	40%
Crabtree	Well 1 (E)	1.05	86%	14%
Crabtree	Well 2 (E)	1.00	84%	16%
Crabtree	Well 1 (L)	1.43	91%	9%
Ernest	Well 1 (E)	1.23	89%	11%
Ernest	Well 2 (E)	1.18	88%	12%
Ernest	Well 1 (L)	1.30	91%	9%
Tanoma	Well 1 (E)	1.14	93%	7%
Tanoma	Well 2 (E)	1.09	92%	8%

Mix Test Results

Mix	ture	Barite SI	Celestite SI
Discharge	Well	Log(IAP/keq)	Log(IAP/keq)
Clyde	Well 1 (E)	3.7	0.0
Clyde	Well 2 (E)	2.8	0.1
Clyde	Well 1 (L)	3.9	0.1
Crabtree	Well 1 (E)	3.0	-0.7
Crabtree	Well 2 (E)	2.1	-0.6
Crabtree	Well 1 (L)	3.1	-0.7
Ernest	Well 1 (E)	3.1	-0.7
Ernest	Well 2 (E)	2.1	-0.7
Ernest	Well 1 (L)	3.1	-0.7
Tanoma	Well 1 (E)	2.7	-1.1
Tanoma	Well 2 (E)	1.8	-1.0

SI = Saturation
 Index

 Basically, how far from equilibrium is the mineral

 (+) precipitation
 (-) dissolution

• $SI = \log_{10}\left(\frac{IAP}{K_{eq}}\right)$

Mix Test Results

Mixture		Barite SI	Celestite SI	Ва	Sr	SO ₄	Total
Discharge	Well	Log(IAP/keq)	Log(IAP/keq)	RE	RE	RE	RE
Clyde	Well 1 (E)	3.7	0.0	100%	53%	74%	80%
Clyde	Well 2 (E)	2.8	0.1	100%	46%	53%	54%
Clyde	Well 1 (L)	3.9	0.1	100%	41%	73%	78%
Crabtree	Well 1 (E)	3.0	-0.7	100%	32%	62%	71%
Crabtree	Well 2 (E)	2.1	-0.6	100%	18%	24%	28%
Crabtree	Well 1 (L)	3.1	-0.7	100%	14%	56%	64%
Ernest	Well 1 (E)	3.1	-0.7	100%	30%	60%	69%
Ernest	Well 2 (E)	2.1	-0.7	99%	15%	30%	30%
Ernest	Well 1 (L)	3.1	-0.7	100%	22%	51%	63%
Tanoma	Well 1 (E)	2.7	-1.1	100%	37%	62%	71%
Tanoma	Well 2 (E)	1.8	-1.0	93%	8%	19%	20%

Removal Analysis

Well Composition Effect

XRD Analysis

		Decreasing Mass % —	
Mix	Mineral 1	Mineral 2	Mineral 3
Clyde + Well 1	Ba _{75%} Sr _{25%} SO ₄	Ba _{50%} Sr _{50%} SO ₄	NaCl
Clyde + Well 2	Ba _{75%} Sr _{25%} SO ₄	BaSO ₄	NaCl
Crabtree + Well 1	Ba _{75%} Sr _{25%} SO ₄	BaSO ₄	
Crabtree + Well 2	NaCl	$CaCl_2(H_2O)_4$	BaSO ₄
Ernest + Well 1	Fe ₃ (Si ₂ O ₅)(OH) ₄	NaCl	FeS ₂
Ernest + Well 2	NaCl	BaSO ₄	

- Common minerals were:
 - Barium-Strontium Sulfate (Ba_xSr_{1-x}SO₄)
 - Barite (BaSO₄)
 - Halite (NaCl)
- But no Celestine (SrSO₄) in precipitate

Discussion of Mixing Results

- Mixing Tests
 - For max removal of barium, strontium and sulfate, need to increase barite saturation index
 - Can be achieved using wells that have higher barium concentration than strontium
- XRD Analysis
 - "Dirty Minerals" form between barium and strontium
 - No celestite formation
 - Indicates that sulfate is not the best for removing strontium

Radium Removal

Mix	Ratio	AMD	Flowback	Ra 228	Ra 226
	(SO4:Ba+Sr)	in mix	in mix	Removal	Removal
Clyde Well 2 (L)	4.14	81%	19%	87%	100%
Crabtree Well 1 (L)	1.43	91%	9%	100%	100%
Ernest Well 2(L)	0.15	51%	49%	82%	96%

Virtually all radium removed in a relatively small mass

Kinetic Testing

- For project to be economic, reactions must occur quickly
- Methodology
 - Measure pH, Alk., Ba, Ca, Sr, and SO₄ once a day for 14 days

- Goal
 - Determine how long samples must remain in contact to remove maximum amount

Kinetic Test Results

Discussion of Kinetic Test

Conclusions

Goals

For mixing test

- Remove 100% barium
- 🗴 Remove 100% strontium

Sulfate levels <100 mg/L

• Kinetic Testing

Learnings

- Celestite is not forming in mixture
- Rather, Ba_xSr_{1-x}SO₄ is forming
- Sulfate is not best removing agent for strontium

Future Work

- Currently modeling reactions
 - CrunchFlow (reactive flow and transport software)
 - Geochemists Workbench
- Determining mixing ratios to:
 - Remove 100% barium
 - Reduce sulfate to < 100 mg/L
- Reduce strontium using other means
 - Adding some alkaline mineral to increase the carbonate in the mix to potentially form strontianite (SrCO₃)

Applications

US Shale Gas Deposits

US Coal Basins

Bureau of Abandoned Mine Reclamation

Questions?

Contact Information:

ecavazza@pa.gov

or <u>ribeam@pa.gov</u> 814-472-1800