# **Kerber Creek Restoration Project**

Case study employing statistical techniques to analyze effects of restoration activities, Saguache, CO



By: Trevor Klein (OSM/VISTA, Kerber Creek Restoration Project); Laura Archuleta (Environmental Contaminants Specialist, U.S. Fish & Wildlife Service), Jason Willis (Mine Restoration Field Coordinator, Trout Unlimited), Negussie Tedela, Ph.D. (Hydrologist, Bureau of Land Management), Brian Sanchez, Ph.D. (Environmental Contaminants Specialist, U.S. Fish & Wildlife Service)

### Introduction: Site History & Study Objectives

## 2) Methods: Site Description & Study Design

## 3) Results: Presentation of Data

4) Discussion: Results & Study Errors

# Site Location

- Northernmost end of Saguache County, CO in the northern San Luis Valley
- Tributary to San Luis Creek in the Rio Grande Closed Basin
- Kerber Creek watershed is approximately 260 km<sup>2</sup>
- Includes private and BLM-owned rangeland and Rio Grande National Forest



# Bonanza Mining District: A History

- 1880s 1970s (largely ceased by 1930s)
- > Dozens of silver, lead, zinc, copper mines (largest: Rawley 12)
- Tailings originally collected and consolidated in streams and behind dams
- Dams destroyed by flood events that carried tailings downstream and deposited them along the stream bank (mid-20<sup>th</sup> century)





# Restoration Efforts, I

- 1994–1999: Restoration projects implemented (upper watershed)
- 2002: ASARCO, Inc. declares bankruptcy, halting restoration projects



Squirrel Creek, 2012 Squirrel Creek, pre-1992

- 1991: USFS & CDPHE investigate for Superfund designation
- 1994: Bonanza Group (ASARCO, Inc., USFS, BLM, Local Landowners) approved to pursue Voluntary Cleanup



RaRdeylely2] ₽,r€+0119296

# Restoration Efforts, II

### **Kerber Creek Restoration Project**

*Mission: To sustain the health of the Kerber Creek watershed through collaborative restoration projects and community education* 

### Methods

*Phytostabilization: In-situ treatment of mine waste deposits* 



Stream Bank Stabilization: Installation of in-stream rock structures, regradation of stream banks





### Restoration Project Objectives

Improve water quality

Increase vegetation cover

Increase fish density

Increase macroinvertebrate density

Reduce width/depth ratio

Increase sinuosity

## **Case Study: Problem and Objectives**

 Systematic, rigorous data analyses rarely conducted for restoration projects

### Needs

- Comprehensive understanding of project results using easily monitored/derived variables
- Further knowledge of stream restoration processes

- Evaluate effects of extent of phytostabilization & time on sinuosity
- 2. Identify functional relationship between extent of phytostabilization & sinuosity
- Assess validity & feasibility of statistical techniques employed

### Problem

### Objectives

### Introduction: Site History & Study Objectives

## 2) Methods: Site Description & Study Design

## 3) Results: Presentation of Data

4) Discussion: Results & Study Errors

## Site

Description ceology: Dominated by tertiary igneous rock (latite)

 Precipitation: Low elevation, 25.4 cm; High elevation, 76.2 cm

#### Ecology

- Vegetation: grasses, willows, sedges
- Fishery: brook trout, some brown trout & longnose dace

### Hydrology

- Avg. high flow: 60 cfs
- Avg. base flow: 4 cfs
- 100-yr flood: 464 cfs

#### Geomorphology

- Avg. bankfull width: 4.3 4.9 m
- Avg. bankfull depth: < 0.3 m
- Avg. gradient: 3%
- Medium-to-large cobble substrate



# Measuring Variables, I: Sinuosity

### Measured remotely using 2005, 2009, 2011 1-m resolution NAIP imagery

Sinustimes Stream LengthValley Length

| Table 1.         Stream length, valley length, and sinuosity for each site. |      |                   |                   |           |  |
|-----------------------------------------------------------------------------|------|-------------------|-------------------|-----------|--|
| Site                                                                        | Year | Stream length (m) | Valley length (m) | Sinuosity |  |
|                                                                             | 2005 | 396.2             |                   | 1.723     |  |
| KC18                                                                        | 2009 | 409.9             | 230               | 1.782     |  |
|                                                                             | 2011 | 399.0             |                   | 1.735     |  |
|                                                                             | 2005 | 306.7             |                   | 1.278     |  |
| KC17                                                                        | 2009 | 319.5             | 240               | 1.331     |  |
|                                                                             | 2011 | 316.2             |                   | 1.320     |  |
| KC15                                                                        | 2005 | 293.9             |                   | 1.176     |  |
|                                                                             | 2009 | 296.3             | 250               | 1.185     |  |
|                                                                             | 2011 | 294.2             |                   | 1.177     |  |
| KC08                                                                        | 2005 | 298.1             |                   | 1.192     |  |
|                                                                             | 2009 | 289.4             | 250               | 1.157     |  |
|                                                                             | 2011 | 281.6             |                   | 1.126     |  |
| KC06                                                                        | 2005 | 283.3             |                   | 1.288     |  |
|                                                                             | 2009 | 298.5             | 220               | 1.357     |  |
|                                                                             | 2011 | 291.2             |                   | 1.324     |  |



# Measuring Variables, II: Extent of Phytostabilization

| Table 2. | hytostabilization index for each     | UTM NAE                    | e<br>I                           |
|----------|--------------------------------------|----------------------------|----------------------------------|
| Site Min | waste in floodplain (hectares)       | Floodplain area (hectares) | Phytostabilization index (%)     |
| KC18     | 0.294                                | 1.008                      | 29.2                             |
| KC17     | 0.248                                | 0.920                      | 27.0                             |
| KC05     | 0.880                                | 0.880                      | 100                              |
| KC08     | 0.012                                | 0.841                      | 1.4                              |
| KC06     | 0 0.1157.5 75                        | 150 0.859                  | 13.5                             |
|          | Buffer Zone (r = 125<br>Kerber Creek | m) Floodplain Area (r =    | ndiesieersannei<br>stes<br>14 m) |

# Statistical Analysis, I: ANOVA

- Used to investigate Objective 1
- Repeated measures analysis of variance
  - Time: Effect of natural channel evolution
  - Independent Variable: Phytostabilization index treatment levels

 Table 3.
 Restoration index treatment levels assigned to each site for repeated measures ANOVA.

| Sites      | Phytostabilization Level |
|------------|--------------------------|
| KC15       | 1                        |
| KC18, KC17 | 2                        |
| KC08, KC06 | 3                        |

- Interaction Term: Time BY Phytostabilization index
- Dependent Variable: Sinuosity

# Statistical Analysis, II: Linear Regression

- Used to investigate Objective 2
- Independent Variable: Phytostabilization index
- Dependent Variable: Average within sites sinuosity values
- No transformations required
- Outlier removed: KC15
- Regression Model:  $S = \beta + P\alpha + \varepsilon$



### Regression Diagnostics With and Without Outlier

Note differences in graphs of Cook's D statistic vs. observation, studentized residual vs. leverage, sinuosity vs. predicted value, and measures of normality

### Introduction: Site History & Study Objectives

## 2) Methods: Site Description & Study Design

## 3) Results: Presentation of Data

4) Discussion: Results & Study Errors

# Results, I: ANOVA

Table 4.Results of repeated measures ANOVAs considering the effects of<br/>phytostabilization and time on sinuosity in Kerber Creek.

| Independent variable     | Numerator DF | Denominator DF | F-value | P-value |
|--------------------------|--------------|----------------|---------|---------|
| Phytostabilization index | 2            | 2              | 1.13    | 0.470   |
| Time                     | 2            | 4              | 1.94    | 0.258   |
| Interaction term         | 4            | 4              | 0.41    | 0.793   |

No statistically significant differences; all null hypotheses could not be rejected



# Results, II: Linear Regression

- Regression coefficient not significant
- Adjusted correlation coefficient = 0.357
- No final regression model



| Table 5. | Results of linear regression analysis: Estimates of regression coefficients for |
|----------|---------------------------------------------------------------------------------|
|          | sinuosity vs. phytostabilization index.                                         |

| Variable    | Estimate | Standard Error | T-value | P-value |
|-------------|----------|----------------|---------|---------|
| Y-Intercept | 1.122    | 0.190          | 5.90    | 0.028   |
| Slope       | 1.476    | 0.904          | 1.63    | 0.244   |

### Introduction: Site History & Study Objectives

## 2) Methods: Site Description & Study Design

## 3) Results: Presentation of Data

4) Discussion: Results & Study Errors



## Discussion, II: Linear Regression



## Discussion, III: Validity & Feasibility of the Study



## Discussion, IV: Other Considerations

- Variable time periods since completion of restoration at each site
- Remote sensinginduced errors at KC08



### Introduction: Site History & Study Objectives

## 2) Methods: Site Description & Study Design

## 3) Results: Presentation of Data

4) Discussion: Results & Study Errors

# Conclusions

- Findings generally inconclusive
- Further, more rigorous data collection required
- Need to develop more accurate, quantitative measures of extent of restoration
- Need to identify appropriate statistical techniques



Squirrel Creek, 1990s

Squirrel Creek, 2013



Trevor Klein, OSM/VISTA Coordinator E-mail: trevorik276@gmail.com Phone: 757-286-2579