# EFNM Waste Consolidation Area Site Selection, Design and Initial Construction

American Society of Mining and Reclamation



Cody J. Lechleitner, P.E. June 9, 2016



### Coeur d'Alene Trust

- In December 2009, U.S. EPA announced the largest Superfund settlement in U.S. EPA history. The U.S. EPA settled with ASARCO for \$1.7 Billion for cleanups across the country.
- \$494 Million toward the cleanup of the Bunker Hill Superfund Site
- Settlement funds were placed in a Successor Coeur d'Alene Custodial and Work Trust (Trust)



### **Getting Started**

### What is the problem?

 Waste rock and tailings deposited high in the Coeur d'Alene Basin are the source of heavy metals (i.e., lead and zinc) contamination

#### Solution

- Remove the mine waste from its present location and place "high and dry"
- Start at the top of the basins and work down





### East Fork Ninemile Creek Mine Waste





### Where Does It Go?

#### Waste consolidation area location selection criteria:

- Close to remediation sites
- Large enough area to contain 1M to 3M CY mine waste
- Existing access roads present
- Potential clean soil and/or rock borrow source
- Free of complex land ownership issues
- Relatively flat
  - Waste will be stacked at 3:1 or flatter



### Site Selection Tools

- **ESRI ArcGIS Slope Analysis**  $\bigcirc$
- Google Earth  $\bigcirc$
- Site Visit!

#### **View From Tamarack**









EFNM Waste Consolidation Area

### **Review Site Selection Criteria**

Waste consolidation area location selection criteria: **V**Close to remediation sites Free of complex land ownership issues **V** Existing access roads present **W** Relatively flat Waste will be stacked at 3:1 or flatter Y Potential clean soil and/or rock borrow source Large enough area to contain 1M to 3M CY mine waste



### **EFNM Waste Consolidation Area**

### **Design Criteria:**

- Capacity 1.5M to 3M
- Maximize site flexibility
- Minimize impacts to surrounding environment
- Integrate rock and soil borrow needs
- Utilize existing roads
- Manage stormwater run-on



# **EFNM Waste Consolidation Area**

### **Existing Conditions Evaluation:**

- Access / property
  - One owner
- Rock
  - Need Up To 400K CY
- Soil Borrow
  - Need Up To 175K CY
- Flat area large enough for WCA base





### Existing Conditions Slope Analysis – CIVIL 3D





# Maximizing Buttress Efficiency

- North Buttress
- South Buttress
  - Many different size variations
  - What is the best size?
- Geotechnical considerations
  - Buttress slopes 2H:1V →
    flexible buttress rock fill
- Trial and Evaluate





### Buttress Sizing – Trial and Evaluate



<u>BUTTRESS SIZE</u> NORTH BUTTRESS FILL VOLUME – 18,500 CY AVG TOP ELEV – 4,628'

SOUTH BUTTRESS FILL VOLUME – 2,500 CY AVG TOP ELEV – 4,570'





BUTTRESS SIZE NORTH BUTTRESS FILL VOLUME - 29,600 BCY AVG TOP ELEV - 4636'

SOUTH BUTTRESS FILL VOLUME - 30,100 BCY AVG TOP ELEV - 4615'



#### **EFNM Waste Consolidation Area**



### Buttress Size vs. Waste Capacity Trial







#### **EFNM Waste Consolidation Area**



# EFNM WCA Final Configuration

### **Design Information**

- Buttress
  - Each Buttress ~35K CY after topsoil stripping
- Rock / soil borrow
  - 400K CY of rock or more
  - Expandable and almost entirely outside of the WCA footprint
  - Soil Borrow 250K CY or more
- Capacity
  - 1.5M CY
  - Expansion to ~2M possible







## Why is this important?

#### **Other Potential WCAs**

- Max Capacity
  - 300K 1.05M CY
- Surface Area
  - 9 24 Acres
- Average Depth
  - 21 FT
- Design Slopes
  - 1.5(H):1(V)
- Est. Min. Cost
  - \$28.40 / CY

#### **EFNM WCA**

- Capacity 1.5M CY
  - Expandable to 2M CY
- Surface Area
  - 24 Acres
- Average Depth
  - 39 FT
- Design Slopes
  - 3(H):1(V)
- Estimate Cost
  - \$17.12 / CY
- WASTE PLACEMENT SAVINGS
  - \$17 M
- ROCK / SOIL BORROW SAVINGS
   \$8 M



### **EFNM WCA Construction**

### **Initial Construction Activities**

- Construction Season in Upper Basin
  - Very Short Season
  - Mid-May  $\rightarrow$  Mid-November
- NWCS Began Mobilization July 8, 2013
  - Late Start
  - Nesting Birds
  - Final Approvals





### Soil Salvage Plan



### Soil Salvage

- Planned to stockpile 100K CY
- Up to 5 feet of Topsoil
- Usable subsoil from 5 to 15 feet
- Mostly decomposed bedrock beyond 15 feet
- Screen 6-inch plus
  - Use screened as rock product



### Quarry Plan

- Rock Products Needed
  - ~70K CY Buttress Rock
  - ~ ~25K CY 1" 3" Drainage Rock
  - ~25K CY 1" Minus
  - ~5K CY Misc. Riprap
    - up to 36-inch diameter



### North and South Buttress Plan



- Buttress Construction
  - Remove topsoil
  - Bench / Toe Drainage System
  - Buttress Rock Fill
    - 3" to 12" or 6" to 24" Rock
    - 2 or 3-Foot Lifts
    - 5-Passes w/ Vibratory Roller
  - North Buttress
    - ~35K CY
  - South Buttress
    - ~35K CY



## North Buttress (as constructed)

- Final Volume ~34K
- Toe Bench / Drain Installed
  Dry
- Very Steep Terrain
  - Difficult To Get Rock To Toe
- Topsoil Salvage Very Difficult
  - Removed Majority
  - Very Rocky





Photo Provided By Alan Davis – Maul Foster and Alongi

20



### South Buttress (as constructed)

- Final Volume ~44K
  - ~22K in 2013
  - Did Not Complete in 2013
- Toe Bench / Drain Installed
  - Very Wet / Natural Spring At Toe
  - Difficult To Prepare
  - Difficult To Define Toe







### South Buttress (as constructed)

#### South Buttress Toe Drain





### Base Drainage System Plan



- Remove Topsoil / Subsoil
- Prepare Foundation
- Install Secondary Drainage
  Pipe Trench
- Place Geotextile
- 2 Feet of 1" to 3" Drainage Rock
- Place Geotextile



# Initial Development Completed in 2014

- Remobilization Costs
- Perimeter Drainage Ditches
- South Buttress
- Soil Salvage
- Interstate Callahan Waste
  Consolidation Begins







### Interstate Callahan Waste Placement Plan

- 220K BCY Waste At the Interstate Callahan
- 120K BCY Planned For 2014
- Utilized Waste Transfer Area Until Initial Development Complete





# Interstate Callahan Waste Placement (End of 2014)

- Approximately 159K BCY Hauled to WCA
- Final Volume of Waste in WCA is ~119K BCY
  - Compaction / Shrinkage
    Calculated at 25.2%
- Top of Waste Graded To Drain 1% to 2% Grade
- Temporary Cover Placement
- Winterization





### Interstate Callahan Waste Placement (End of 2015)

- Total Waste 216K BCY 57K BCY in 2015
- Final Volume of Waste in WCA is ~164K BCY
  - Compaction / Shrinkage Calculated at ~24%
- Top of Waste Graded To Drain >5%
- Temporary Cover Placement and Winterization





### Waste vs. Waste





### Lessons Learned

Don't Trade June For November In The Upper Basin

- Get Designs Approved Early
- Can't Do Much About Nesting Birds But Wait

Lidar

- Expect Volume Variation May Be Significant
- Truth Check LiDAR Or Survey After Clearing And Grubbing
- Waste Compaction
  - Compaction / Shrinkage Hard to Estimate
  - Lots of Variation (i.e., grain size, debris, moisture content)
  - Time and Materials for Waste Placement and Compaction
- Temporary Cover Design
  - >5% Final Grades Encourages Runoff



### Questions?

Cody J. Lechleitner, P.E., DBIA CDM Smith Inc. – Kellogg, Idaho Office 208-783-1801 (x100) lechleitnercj@cdmsmith.com



