Geotechnical-Geophysical Void Mapping and Foamed-Sand Backfilling of the Rapson Coal Mine, Colorado Springs, Colorado – Case Study

Kanaan Hanna, Jim Pfeiffer & Steve Hodges, Zapata Incorporated Al Amundson, Colorado Division of Reclamation, Mining and Safety Richard Palladino, Cellular Concrete Solutions Tom Szynakiewicz, Hayward Baker

Joint Conference

2nd Wyoming Reclamation and Restoration Symposium 30th Annual Meeting of the American Society of Mining and Reclamation

www.zapeng.com

888.529.7243

Focus

Project Site Location & Subsidence/ Sinkhole Problems

Geotechnical-Geophysical Methodology

- Subsurface data acquisition and interpretation
- Exploratory boring
- Laser, sonar and video void investigation

Colorado DRMS/Hayward Baker Ground Modification Treatment

- Low mobility grouting or compaction grouting (LMG) beneath houses
- Foamed sand slurry backfilling of large underground opening

2

ZAPATA Video Monitoring of the Foamed-Sand Backfilling of the Rapson Mine

ZAPATA Services

Country Club Circle (CCC) Residential Neighborhood

 \bigcirc

Historic subsidence

Trough subsidence

Sinkhole mitigation

A combination of several geophysical methods to provide reliable information

 (\mathbf{Z})

Animated

Geophysical Methodology – Geologic Setting

 (\mathbf{Z})

Site Map and Geophysical Survey Layout

MASW Data Acquisition

Land streamer setup: 48 channel, 4.5 Hz geophones

iVi Envirovibe seismic source

Recording vehicle (doghouse)

MASW Data Interpretation

MASW data plots - Lines 3 & 8

 \bigcirc

www.zapeng.com

888.529.7243

RVSP Data Acquisition

RVSP setup: 136 channels, 40 Hz geophones, 2 ft spacing Survey lines crossing street and driveway

Survey line crossing residence yard

 Baaarding yahiala (daghayaa)

Recording vehicle (doghouse)

 \bigcirc

Airgun seismic source

RVSP data plot – "A" seam mine working delineation: **Borehole CCC3**

Exploratory Boring Program – Ground Truthing

Drilling and sampling

CSM 75 drill rig setup

Drilling through ~ 40 ft sand

4 inch PVC casing installation

Casing/grout setup w/ 10% bentonite

Drilling through ~ 7 ft coal

Exploratory Boring Program – Ground Truthing

Standard penetration tests (SPTs)

Subsurface Physical Characterization

Geophysical logs - Sonic, bulk density, resistivity

 \bigcirc

Geologic Profiles

Geologic cross section (A-A')

888.529.7243

Geologic Profiles

Geologic cross section (B-B')

 \bigcirc

Mine Workings Void Investigation– Data Acquisition

Laser, video camera, and sonar - Field setup

Laser – Void scanning

Sonar – Void scanning

Video camera - Void imaging

 \bigcirc

Laser scans – Borehole CCC6

 \bigcirc

www.zapeng.com

888.529.7243

Mine Workings Void Investigation – Laser Results

Laser 3-D model of haulageway (main entry) Borehole CCC6

Laser 2D interpretation plan view Borehole CCC13

 \bigcirc

Mine Workings Void Investigation – Video Results

Video images interpretation – Borehole CCC6

N View

Reconciliation of interpreted geophysical results w/ historic base mine maps

Alignment of the Rapson No. 2 historic base mine map and haulageway entry

- RVSP results: The position of the mine workings in the north-northeast was shifted 25 ft north.
- Laser results: The position of the re-constructed haulageway was shifted 25 ft south and 17 ft

west

Colorado DRMS applied two ground stabilization techniques:

- Low mobility grouting (LMG) beneath houses, and
- □ Foamed sand slurry in entries/haulageways

Hayward Baker performing ground stabilization (LMG) beneath a house area:

- Injection at 600 psi at the bottom of the hole, and
- 200 psi near the top of the hole
- □ Grout amount per house averaged ~ 348 yd³ @ cost of ~ \$66,600

Colorado DRMS applied two ground stabilization techniques:

- Low mobility grouting (LMG) beneath houses, and
- □ Foamed sand slurry of large mine opening (entries/haulageways)

Hayward Baker performed stabilization in large mine opening using Geofoam[™] developed and supplied by Cellular Concrete:

- The foam is generated on site and mixed with sand in a concrete mixer truck
- The foam takes the place of water, allowing the sand to flow similar to sand-and-water slurry
- Approximately 3 yd³ of foam was mixed with 6 yd³ of damp sand for \sim 5 minutes,
- The foamed sand slurry was then gravity fed down the 4-in PVC casing
- The flow of sand was monitored by the video camera from a nearby borehole, approximately 50 ft away
- The foamed sand slurry filled the void to the approx. quantity estimated by the laser scans (511 yd³)
- □ The cost of the foam sand slurry is approx. half the cost per yd³ of the LMG treatment

Video images from CCC13 of foamed sand slurry backfilling in Borehole CCC6

 \mathbf{Z}

