Active Alkaline Addition Schemes for Removal of Diverse Contaminants in ARD

Thomas Wildeman, Katie Vatterrodt, Linda Figueroa, Colorado School of Mines, Golden, CO

Charles Bucknam, Newmont USA Limited, Englewood, CO

Aggressive ARD

Metals	WATER 1	WATER 2	Targets
	mg/L	mg/L	mg/L
AI	66.2	458	0.087
As	1.106	0.062	0.01
Cd	0.862	0.363	0.005
Fe	263	608	1
Mn	13	101	0.88
TI	0.032	0.001	0.002
<u>TI</u> Zn	16.4	32.4	0.38
SO4	1818	5435	
Cu	46.2	19.7	0.03
Ni	0.204	0.586	0.17
рН		2.61	6.5-8.4

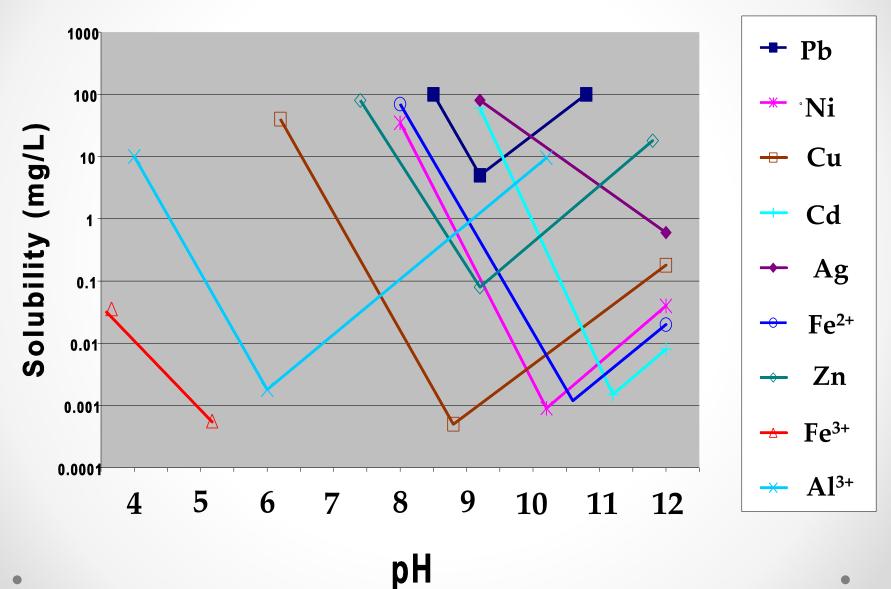
Passive treatment is most problematic

Try various methods of active alkaline addition to determine the best removal scheme.

Concentrate on effective arsenic and thallium removal

Chemicals Used

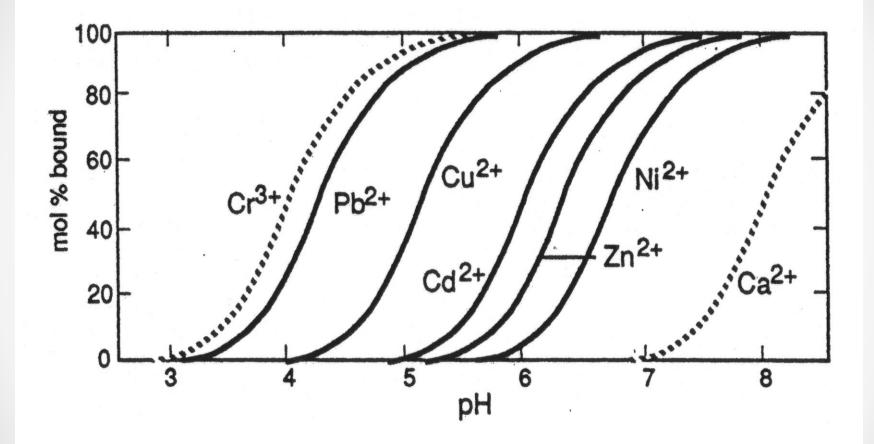
- Hydrated CaO for pH increase in a 10% soln, variable flow
- Mn soln at 3000 ppm (used MnSO₄) at 2.5mL/min (75ppm)
- Fe soln at 1000 ppm (used FeCl₃) in at 2.5 mL/min (25 ppm)
- Nalco 8872 polymer (nonionic surfactant) added in Tank 2 (1% solution)
- Air added to all mixing tanks


Configuration 1

Bench Scale Plant Specifications

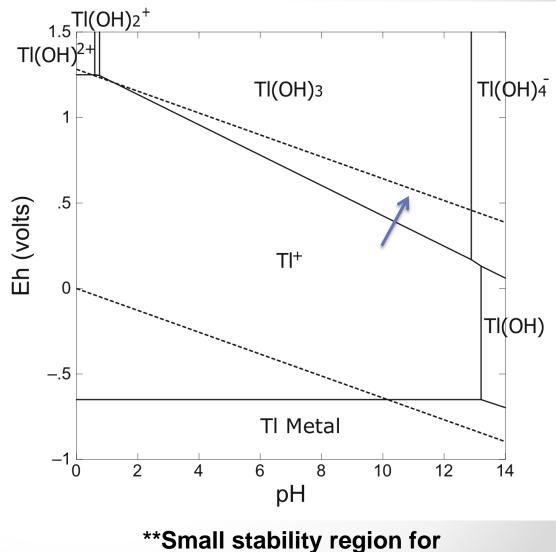
- Reaction tanks=1.9L
- Clarifier 1 = 9L; Clarifier 2 = 7L
- Flow rate = 100mL/min
- Rapid mix in Tank 1, Slow mix in Tank 2, Rapid mix in Tank 3

HYDROXIDE SOLUBILITY



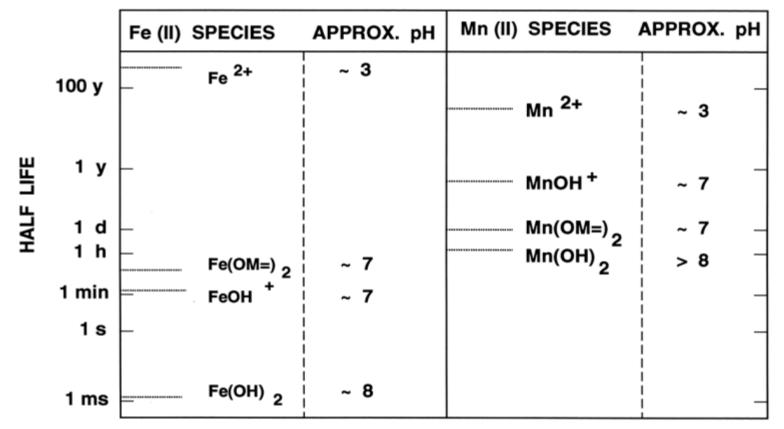
Mechanisms for Removal

- Sorption Occlusion
- Co-precipitation =
 - + =
- Oxidative- Precipitation


ADSORPTION ONTO Al(OH)₃

Hydroxide precipitation & adsorption sequence are comparable but adsorption is ~ 2 pH units lower

Thallium Oxidation & Precipitation


- Thallium (TI) is a very toxic, naturally occurring trace metal present in a range of metal sulfide minerals.
- The dominant ion is Tl^{+.} It is very difficult to oxidize to the insoluble species of Tl³⁺
- Try oxidation & precipitation at high pH.

Tl³⁺ in water

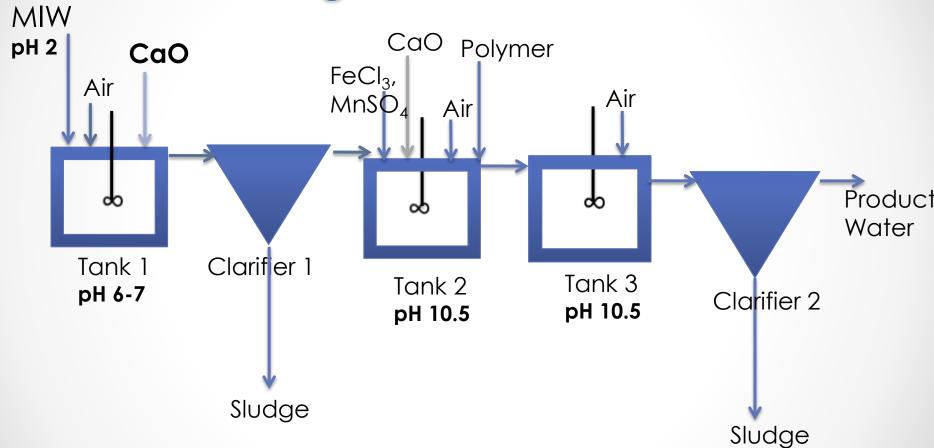
Mn & Fe OXIDATION KINETICS

HALF-LIVES FOR OXYGENATION OF Fe(II) & Mn(II) SPECIES (OM=) MEANS BOUND TO A METAL OXIDE SURFACE

From Wehrli & Stumm (1989)

Configuration 1

Goal: Two-stage Precipitation, low to high


• Stage 1 at pH 7

- Aluminum, Iron, Selenium, Arsenic removal expected
- Removal of Cadmium, Copper, Nickel, and Zinc??
- Only CaO and O₂ addition

Stage 2 at pH 10.5

- Removal of Cadmium, Copper, Nickel, and Zinc??
- Oxidation of Manganese co-precipitation/sorption of Thallium
- Chemical addition: iron, manganese, polymer
- Longer HRT (2 reaction tanks)

Small Scale Lime Precipitation System Configuration 1 (N1-N4)

Experimental Runs

- N1: Configuration 1 Polymer
- N2: Configuration 1 FeCl₃
- N3: Configuration 1 FeCl₃ and Polymer
- N4: Configuration 1 FeCl₃, MnSO₄ and Polymer

Removal of COCs

Cd, Cu, Co, Ni, and Zn not completely removed at pH 7 but all met targets at pH 10.5

**Red values on the following tables indicate the metal is above the target.

Polymer addition, 3hr run time. All values in (mg/L)

<u>COC</u>	<u>Initial</u>	<u>Clarifier 1</u> (pH 7)	<u>Clarifier 2</u> (pH 10.5)
Arsenic	0.39	6.1	0.052
Thallium	0.131	0.118	0.069
Iron	197	0.003	0.011
Manganese	14.4	8.2	0.056
Aluminum	73	0.052	6.08

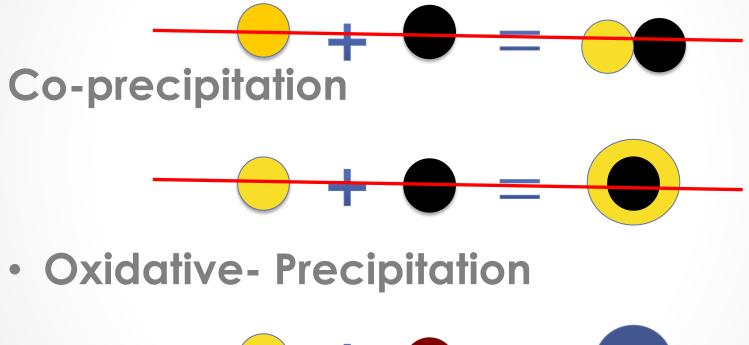
• FeCl₃ addition, 3.5 hr run time.

<u>COC</u>	<u>Initial</u>	<u>Clarifier 1</u> (pH 7)	<u>Clarifier 2</u> (pH 10.5)
Arsenic	0.424	0.006	0.012
Thallium	0.225	0.173	0.140
Iron	212	0.049	0.060
Manganese	17	7.4	0.018
Aluminum	85	0.083	0.23

Polymer and FeCl₃ addition, 3hr run time.

COC	<u>Initial</u>	<u>Clarifier 1</u> PH 7	<u>Clarifier 2</u>
Arsenic	0.036	0.0051	0.0052
Thallium	0.143	0.150	0.099
Iron	193	0.0003	0.0001
Manganese	14.5	10.97	0.495
Aluminum	72	0.022	0.22

 FeCl₃, MnSO₄ and Polymer addition, 3hr run time


COC	<u>Initial</u>	<u>Clarifier 1</u> (pH 7)	<u>Clarifier 2</u> (pH 10.5)
Arsenic	0.35	0.0069	0.0047
Thallium	0.112	0.110	0.048
Iron	187.6	0.021	0.018
Manganese	14.3	9.32	0.007
Aluminum	69.9	0.026	0.160

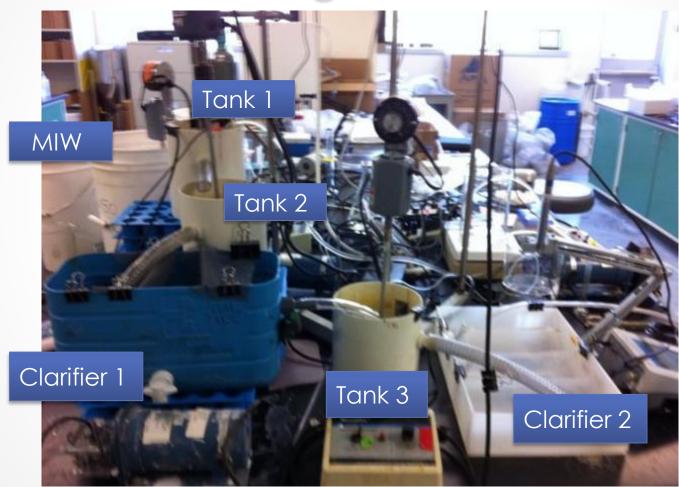
Conclusions: Configuration 1

- All COCs removed to below targets except thallium, arsenic and aluminum
- For Cu, Cd, Co, Ni, and Zn, in all 4 experiments, removal was not below targets until stage 2 (pH 10.5)
- Mn addition resulted in higher thallium removal.
- Iron is important for arsenic removal

Mechanisms for Removal

Configuration 2: Jake Croal's Method

Goal: Two-stage Precipitation, high to low


• Stage 1 at pH 11

- Addition of CaO and O2
- Oxidation/removal of most COCs
- Chemical addition variables: Manganese, Polymer

Stage 2 at pH 6-8

- Targeting aluminum and arsenic removal
- Chemical addition variables: Iron, HCI

Configuration 2

Specifications: Configuration 2


Volumes And Flow

- Reaction tanks=1.9L
- Clarifier1 = 9L; Clarifier2 = 7L
- Flow rate = 100mL/min
- Rapid mix in Tank 1, Slow mix in Tank 2, Rapid mix in Tank 3

Chemical additions

- CaO for pH increase in a 10% soln, variable flow
- Mn soln at 3000ppm (used MnSO₄) in at 2.5mL/min (75ppm)
- Fe soln at 1000 ppm (used FeCl3) in at 2.5 mL/min (25ppm)
- Polymer (Nalco 8872 nonionic surfactant) added in Tank 2 (1% solution)
- Air added to all mixing tanks
- HCI added for pH decrease

Small Scale Lime Precipitation System Configuration 2

MW

Configuration 2 Experiments

- N5: Configuration 2 MnSO₄, Polymer and HCI
- N6: Configuration 2 MnSO₄, Polymer and HCI
- N7: Configuration 2 MnSO₄, Polymer, FeCl₃ and HCI

MnSO₄ and Polymer addition. 3hr run time.

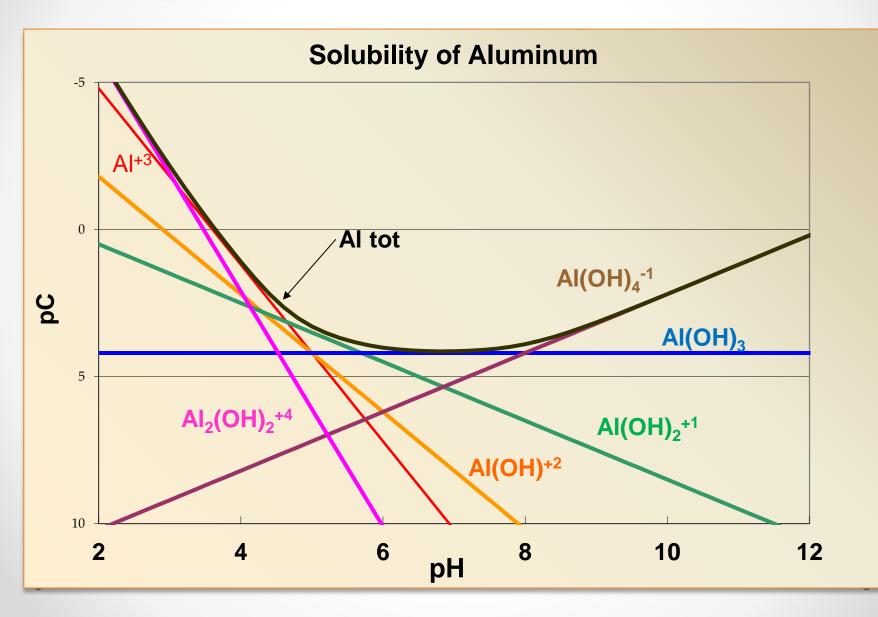
<u>COC</u>	<u>Initial</u>	<u>Clarifier 1</u> (pH 11)	<u>Clarifier 2</u> (pH 6-8)
Arsenic	0.37	0.005	0.004
Thallium	0.055	0.010	0.0017
Iron	204	0.020	0.008
Manganese	15.6	0.006	0.104
Aluminum	79	13.7	0.037

Duplicate of N5

<u>COC</u>	<u>Initial</u>	<u>Clarifier 1</u> (pH 11)	<u>Clarifier 2</u> (pH 6-8)
Arsenic	0.36	<0.004	<0.004
Thallium	0.005	<0.002	<0.002
Iron	189	0.028	0.014
Manganese	15	0.012	0.143
Aluminum	65	1.1	0.92

 MnSO₄, Polymer and FeCl₃ addition. 3 hr run time.

COC	<u>Initial</u>	<u>Clarifier 1</u> (pH 11)	<u>Clarifier 2</u> (pH 6-8)
Arsenic	0.385	<0.004	0.004
Thallium	0.0425	0.0047	0.006
Iron	222	0.03	0.014
Manganese	16.1	0.008	0.50
Aluminum	81	10.5	0.14


Conclusions Configuration 2

- Thallium removed at pH 11 with the addition of manganese. Need that oxidation – precipitation.
- Arsenic removed at pH 11 with no iron addition.
- Aluminum removal is possible.

Further Work

- Pilot high density sludge study
- How much Mn and Fe are necessary?
- Is aluminum problem a result of ineffective clarification, or is there a chemical issue?
- What would happen to selenium in these schemes?

Aqueous Aluminum Chemistry

Questions - Comments

