Bench-Scale Treatability Testing for *In Situ* Bioremediation of Mining-Influenced Water

Nathan Smith, CDM Smith Nick Anton, CDM Smith David Reisman, CDM Smith Mark Nelson, CDM Smith Angela Frandsen, CDM Smith Roger Olsen, CDM Smith

June 6, 2013

MIW Treatment Overview

- Treatment often completed using active methods (treatment plants) or passive/semi-passive methods (biochemical reactors [BCRs], wetlands, limestone drains)
- Treatment is completed where drainage exits the mine, including: adits, seeps, or pumped
 - Requires multiple points for treatment, or complex piping/transport of the MIW

Optimization Goals

- Reduce the number of locations where treatment is required
- Reduce capital cost
- Reduce operation and maintenance cost
- Passive or semi-passive technologies reduce cost, but do not solve the issue of conveyance of MIW from multiple locations

BCR Overview

- Significant advances have been made in optimization and performance of BCRs
- Utilize sulfate-reduction process to produce sulfide, generate alkalinity, and remove metals through adsorption and geochemical reactions (e.g., metal sulfide precipitation)

Advantages	Disadvantages
Passive or semi-passive Lower capital cost	Plugging Longevity Do not always remove COCs to below remediation goal Long retention times often necessary (low flow/volume)

In Situ Application Overview

- In situ treatment involves generation of sulfate-reducing conditions within the abandoned mine – simulates a BCR
 - Includes application to mine voids (bulk treatment), shafts, fractures (PRB-type application)
 - Utilizes pH adjustment and organic amendment addition
 - Utilizes the same geochemical principles of BCRs
 - Treats the MIW at the source, rather than the outlet

In Situ Application – Potential Challenges

- Requires detail of hydrogeology and hydraulic control
- Consists of permanently submerged areas, temporarily submerged areas, and vadose zone
- Amendment delivery methods

In Situ Application – Potential Benefits

- Opportunity to treat the MIW at the source
- Potential plugging could prevent continued fracture flow/ oxidation of acid-generating materials
- Create preferential pathways to minimize oxidation of vadose zone material

Bench-Scale Testing Design

- Utilized batch reactors to simulate MIW present within a mine void
 - Cubitainers containing:
 - MIW
 - Site sediments (simulate conditions in the mine, as well as provide native bacterial population)
 - Inert material (sand)
 - Roughly 2/3 of each container was freeboard MIW to simulate open voids
 - pH adjustment (NaOH addition to 4.5 su)
 - Added carbon amendment
 - Added manure to stimulate bacterial activity

Bench-Scale Testing Carbon Sources

- Selected carbon sources that could be easily injected (either liquids, or solids that could be slurried)
 - Ethanol (two doses 50 mL and 150 mL)
 - Antifreeze (ethylene glycol; two doses 50 mL and 150 mL)
 - Beer (50 mL)
 - ChitoRem[®] (no pH adjustment completed with NaOH)
 - Methanol (50 mL)

Water Types/Sites

- Three MIW types
 - MIW-1: strongly acidic (starting pH 2.51), high metals (450 mg/L
 Al, 250 ug/L Cd, 54 mg/L Cu, 6.2 mg/L Zn), high sulfate (14,000 mg/L)
 - MIW-2: near-neutral (starting pH 5.05), low metals, except Zn (36 mg/L), low sulfate (230 mg/L)
 - MIW-3: strongly acidic (starting pH 2.76), high metals (370 mg/L
 Al, 190 ug/L Cd, 62 mg/L Cu, 30 mg/L Zn), high sulfate (9,400 mg/L)
- Sediments from nearby ponds/streams were collected for addition to tests to simulate potential conditions within the mine void
- All water was collected in cubitainers with minimal headspace to attempt to preserve geochemical conditions

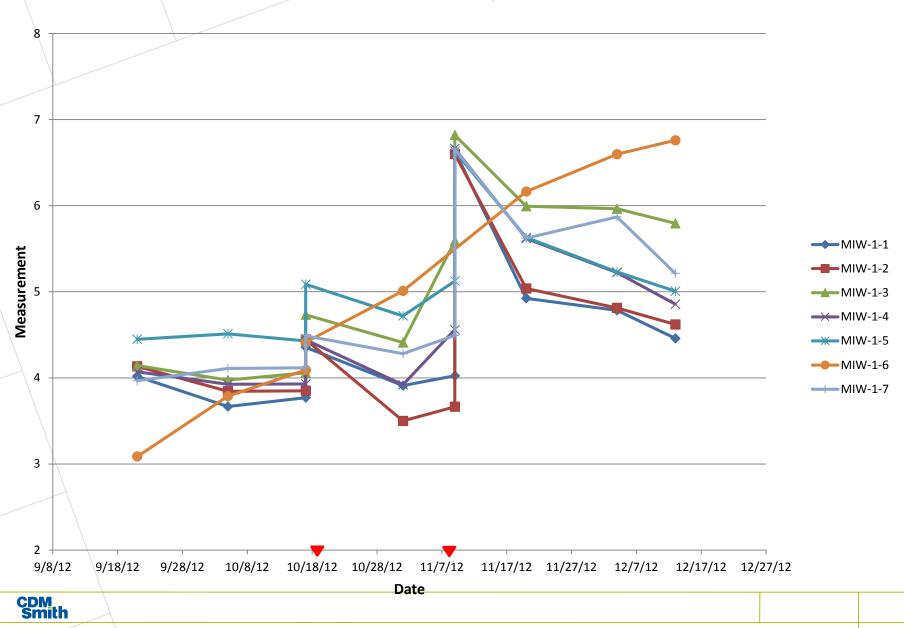
Test Startup

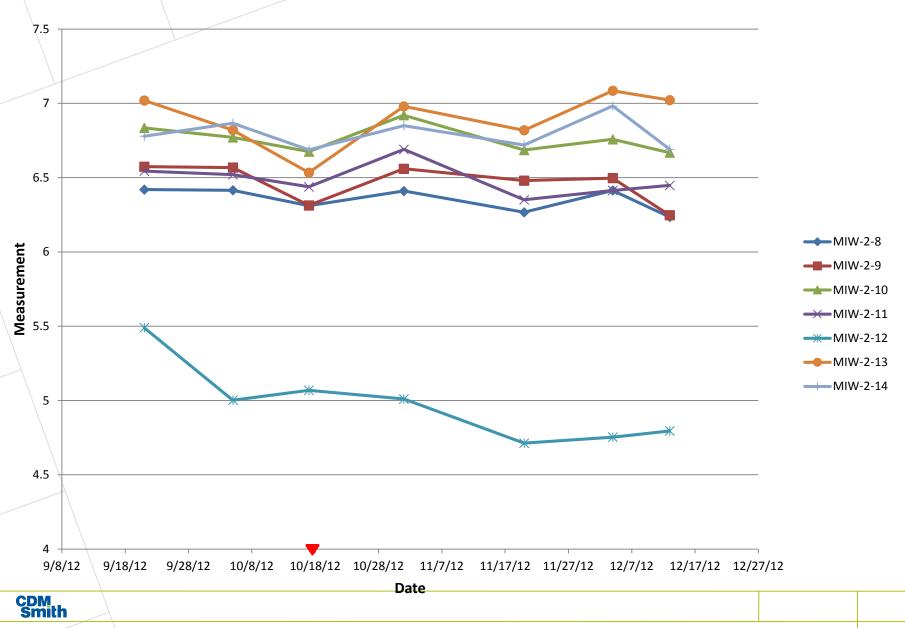
- Titrations with 25% NaOH solution completed for raw MIW to determine approximate dosing requirements to reach pH 4.5 (not necessary for MIW-2)
- MIW, site sediments, and inert materials added to cubitainers
- Added carbon amendment to each container
- Added NaOH to each container for pH adjustment (not completed for MIW-2)
- Compressed containers to minimize oxygen presence
- 21 tests total (3 MIW types x 7 carbon amendments)
- Test length: 3 months

Test Evaluation

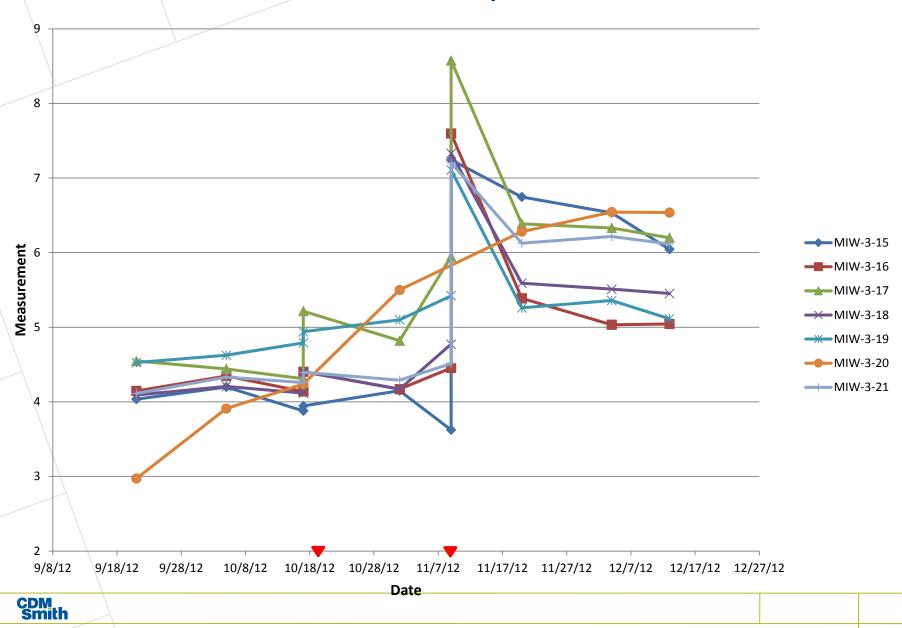
- Metal removal efficiency (MRE)
- Sulfide production
- Sulfate reduction
- ORP decrease
- pH increase
- Alkalinity increase

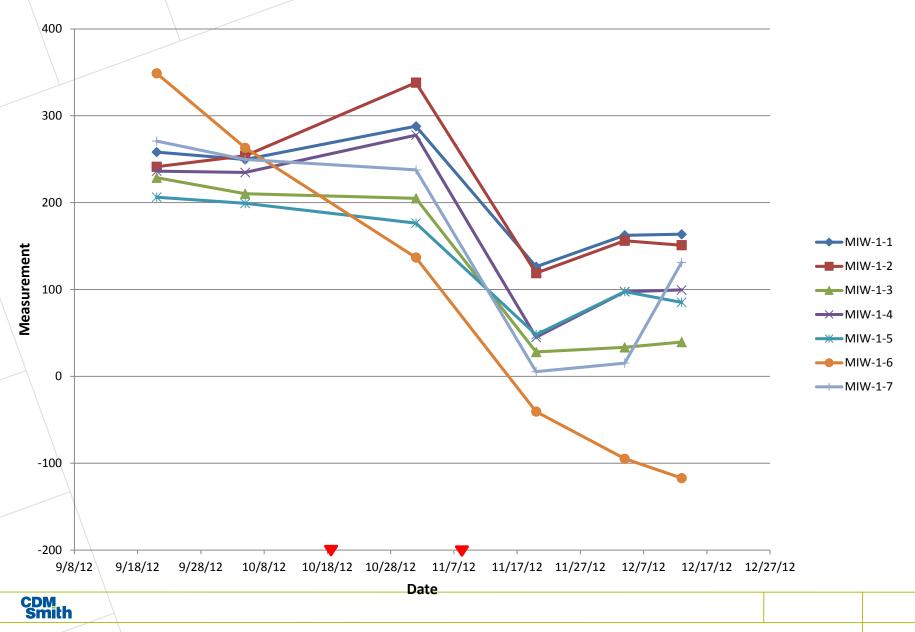
Test Operation

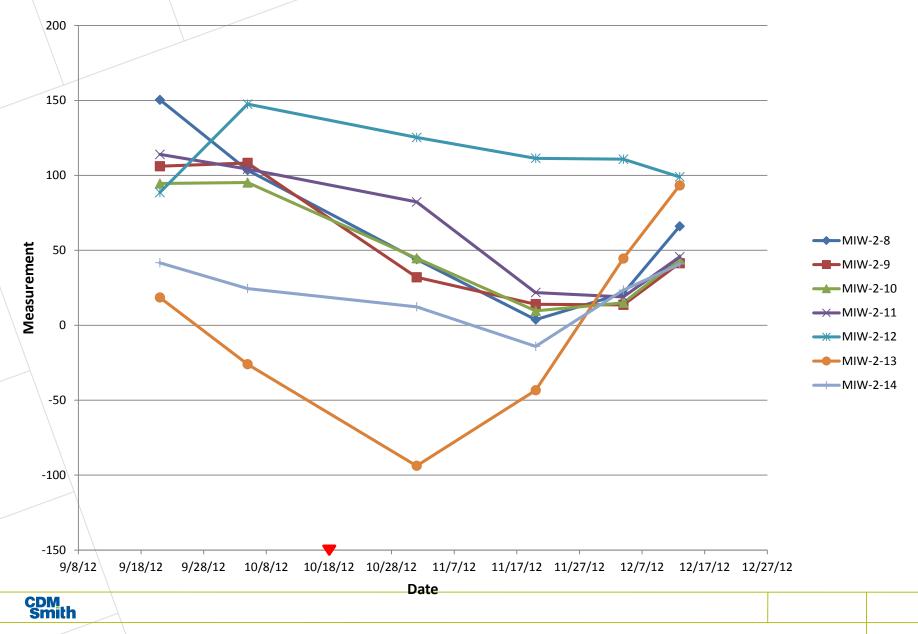

- Real-time parameter measurement during testing included:
 - pH Ferrous iron
 - ORP Sulfide
 - Conductivity Sulfate
 - DO Alkalinity
- Completed biweekly testing
- Added NaOH, amendments, and manure as necessary to increase sulfide production
- Sampling activities may have introduced oxygen stress

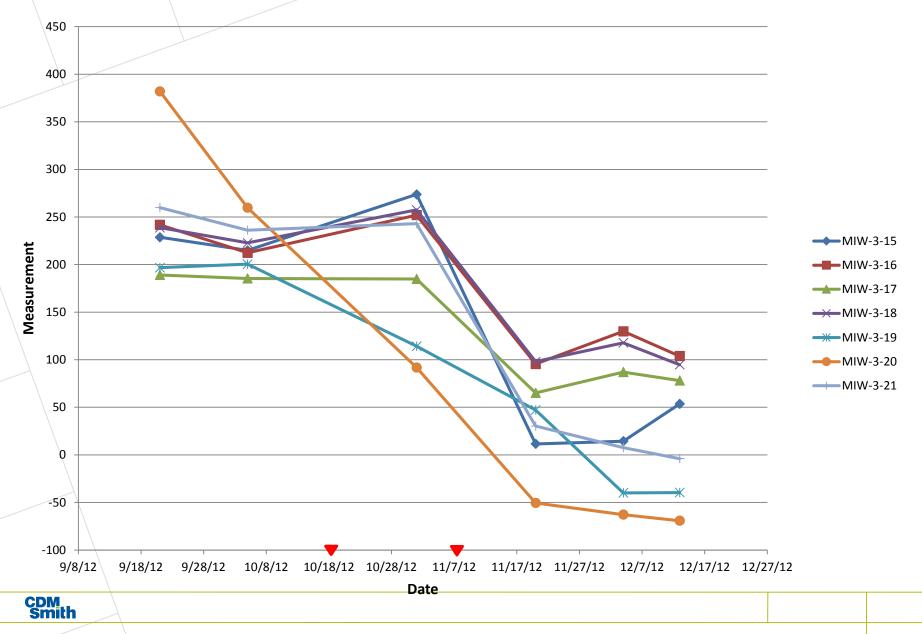


		9/7/2	2012	10/1/2012	1	0/17/20	12	11/9/2012			Cumulative		
		NaOH			NaOH		Manure	NaOH		Manure	NaOH		Manure
Sample ID	Amendment	(mL)	Organic	Organic	(mL)	Organic	(mL)	(mL)	Organic	(mL)	(mL)	Organic	(mL)
MIW-1		1		1					1	1	1	1	1
MIW-1-1	Ethanol (mL)	16.20	150		1	. 50	50	7	7 150	50	24.20	350	100
MIW-1-2	Ethanol (mL)	16.80	50		1	16.67	50	8.5	5 50	50	26.30	116.67	100
MIW-1-3	Ethylene glycol (mL)	16.75	150		1	. 50	50	3	3 150	50	20.75	350	100
MIW-1-4	Ethylene glycol (mL)	16.70	50		1	16.67	50	6	5 50	50	23.70	116.67	100
MIW-1-5	Beer (mL)	16.30	50		1	16.67	50	3	<mark>8</mark> 50	50	20.30	116.67	100
MIW-1-6	ChitoRem (g)		6.25	12.5		6.25			6.25		0.00	31.25	0
MIW-1-7	Methanol (mL)	15.00	50		1	16.67	50	7	7 50	50	23.00	116.67	100
MIW-2													
MIW-2-8	Ethanol (mL)		150			50	50				0.00	200	50
MIW-2-9	Ethanol (mL)		50			16.67	50				0.00	66.67	50
MIW-2-10	Ethylene glycol (mL)		150			50	50				0.00	200	50
MIW-2-11	Ethylene glycol (mL)		50			16.67	50				0.00	66.67	50
MIW-2-12	Beer (mL)		50			16.67	50				0.00	66.67	50
MIW-2-13	ChitoRem (g)		6.25	6.25							0.00	12.5	0
MIW-2-14	Methanol (mL)		50			16.67	50				0.00	66.67	50
MIW-3	•							•		•			•
MIW-3-15	Ethanol (mL)	14.50	150		1	. 50	50	7	/ 150	50	22.50	350	100
MIW-3-16	Ethanol (mL)	23.00	50		1	16.67	50	5	5 50	50	29.00	116.67	100
MIW-3-17	Ethylene glycol (mL)	16.15	150		1	. 50	50	2	2 150	50	19.15	350	100
MIW-3-18	Ethylene glycol (mL)	15.85	50		1	16.67	50	Z	i 50	50	20.85	116.67	100
MIW-3-19	Beer (mL)	14.90	50		1	16.67	50	3	3 50	50	18.90	116.67	100
MIW-3-20	ChitoRem (g)		6.25	12.5		6.25			6.25		0.00	31.25	0
MIW-3-21	Methanol (mL)	15.70	50		1	16.67	50	5	50	50	21.70	116.67	100


MIW-1 pH


MIW-2 pH


MIW-3 pH


MIW-1 ORP

MIW-2 ORP

MIW-3 ORP

		Aluminum	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc
Sample ID	Donor	% Reduction	% Reduction	% Reduction	% Reduction	n % Reduction	n % Reduction	n % Reductior	N% Reduction	n % Reduction
MIW-1										
MIW-1-1	Ethanol, 150mL	98%	99%	25%	100%	90%	89%	95%	31%	3%
MIW-1-2	Ethanol, 50 mL	98%	99%	21%	100%	96%	86%	100%	30%	-2%
MIW-1-3	Ethylene glycol, 150 mL	100%	99%	49%	99%	100%	83%	100%	77%	71%
MIW-1-4	Ethylene glycol, 50 mL	98%	99%	21%	99%	98%	82%	100%	14%	-7%
MIW-1-5	Beer, 50 mL	97%	98%	1%	99%	99%	31%	98%	28%	44%
MIW-1-5 (DUP-1)	Beer, 50 mL	97%	98%	9%	99%	99%	50%	98%	30%	24%
MIW-1-6	ChitoRem	100%	93%	100%	100%	100%	92%	100%	98%	100%
MIW-1-7	Methanol, 50 mL	98%	99%	-7%	100%	94%	85%	100%	24%	-13%
MIW-2										
MIW-2-8	Ethanol, 150mL	100%	NA	87%	NA	31%	100%	98%	74%	94%
MIW-2-9	Ethanol, 50 mL	100%	NA	100%	NA	75%	-14374%	99%	87%	100%
MIW-2-10	Ethylene glycol, 150 mL	100%	NA	77%	NA	46%	100%	79%	82%	84%
MIW-2-11	Ethylene glycol, 50 mL	100%	NA	57%	NA	64%	-295%	92%	19%	79%
MIW-2-12	Beer, 50 mL	-1107%	NA	100%	NA	46%	-197268%	87%	-573%	6%
MIW-2-13	ChitoRem	100%	NA	100%	NA	18%	-479%	99%	-223%	100%
MIW-2-14	Methanol, 50 mL	100%	NA	100%	NA	54%	-584%	93%	12%	92%
MIW-3										
MIW-3-15	Ethanol, 150mL	100%	97%	60%	100%	99%	99%	100%	57%	80%
MIW-3-16	Ethanol, 50 mL	100%	97%	61%	100%	99%	90%	100%	33%	88%
MIW-3-16 (DUP-2)	Ethanol, 50 mL	100%	97%	58%	100%	99%	91%	100%	23%	86%
MIW-3-17	Ethylene glycol, 150 mL	100%	100%	84%	69%	100%	100%	81%	95%	96%
MIW-3-18	Ethylene glycol, 50 mL	100%	93%	62%	87%	99%	99%	94%	6%	82%
MIW-3-19	Beer, 50 mL	100%	84%	100%	92%	100%	47%	100%	84%	100%
MIW-3-20	ChitoRem	100%	-86%	100%	100%	100%	93%	100%	80%	100%
MIW-3-21	Methanol, 50 mL	100%	98%	59%	100%	100%	91%	100%	39%	87%

Test Results, MIW-1

- Best metal removal by ChitoRem[®]
- Most tests did accomplish high removal of Al, As, Cr, Cu, Se
- Ethylene glycol appeared to provide the next best removal after ChitoRem[®]
- Best sulfate reduction in ChitoRem[®], and only test with sulfide production
- Ethylene glycol produced promising results, with trends suggesting stronger reducing conditions developing by end of test

Test Results, MIW-2

- Primary metals of concern included Zn and Cd; best removal achieved by ChitoRem[®] and ethanol (50 mL dose)
- These tests also generated elevated sulfide
- Higher ethanol dose did not perform as well, possibly due to competing bacterial use of the donor

Test Results, MIW-3

- High metal removal achieved by ethanol, ethylene glycol, beer, and ChitoRem[®]
- ChitoRem[®] and beer generated the most sulfide, with production also by the ethanol 50 mL dose
- pH adjustment for MIW-3 may have resulted in generally favorable metal removal and sulfide production
 - Blue-green precipitate noticed following final pH adjustment

Conclusions

- ChitoRem[®] performed consistently well
 - No pH adjustment
 - No manure addition
- Low-dose ethanol also performed well for MIW 2 and 3
- Ethylene glycol performed well for MIW 1 and 3
- Testing indicates that MIW treatment can be accomplished through use of liquid substrates within the water column (saturated solid media not necessary)

Conclusions

- Oxygen stress may have hindered progress, based on observed DO, ORP values
 - May have influenced pH, and prevented sulfate reduction in some treatment tests
- Addition of site sediments provides native bacteria and sitespecific conditions
 - Addition of site sediments increased total metals and acidity in the tests
 - Resulted in addition of more NaOH than anticipated based on titration testing

Future Work

- Completing additional bench testing activities using column studies
 - Reaction rates
 - Dosing requirements

- Utilize columns packed with site
 waste rock to simulate *in situ* environment
 - Operate control column to determine the effect site waste rock
 has on the overall pH, acidity, and metal loading to the system

Questions

