Biochemical Reactors for Hard Rock Mining-Influenced Water: Overview of Treatability Studies and Lessons Learned for	
Implementation ASMR 2016	Nick Anton, P.E.
	CDM Smith.
Nathan Smith, Angela Frandsen, PE, Kevin Saller, PhD, David Reisman, Roger Olsen, PhD	

Acknowledgments

- U.S. Environmental Protection Agency, Regions 8, 9, and 10
- EPA National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH
- Successor Coeur d'Alene Custodial and Work Trust
- Interstate Technology Regulatory Council Biochemical Reactors for Mining-Influenced Water Guidance (2012)
- JRW Bioremediation
- CDM Smith Research and Development Program
- CDM Smith Team

Outline

Introduction

- BCR Overview
- Water Chemistries
- Study Questions and Goals
- Study Test Setup
- Pre-Treatment
- Evaluating Metal Removal Mechanisms
 - Key Parameters and Examples
- BCR System Stresses
- Operations and Maintenance
- Substrates

BCR Treatment

Biochemical Reactor (BCR) Treatment: (ITRC 2012)

An engineered treatment system that uses an organic substrate (electron donor) to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in mining-influenced water.

 $SO_{4}^{-2} + 2 CH_{2}O = H_{2}S + 2 HCO_{3}^{-2}$ $H_{2}S + Me^{+2} = MeS (solid) + 2H^{+}$

- Requires sulfate and carbon electron donor for sulfate-reducing bacteria (SRB) to metabolize
- **Electron donors:**
 - Solid plant- based materials wood chips, sawdust, compost, straw, brewers waste, etc.
 - Aquatic-based: crab shell (chitin), oyster shells, fish bones, etc.
 - Liquid-based: ethanol, methanol, molasses, propylene glycol, volatile fatty acids (acetic, propionic, lactic)
- Inoculum for SRB and other necessary bacteria needed Dairy cow or other manures
- Often limestone mixed with substrate to increase buffering capacity

MIW Chemistry

Site		Barker-Hu	ughesville	Blue I	Blue Ledge		Bunker Hill		Tenmile
									National
						Formosa		Success	Extension
MIW		Danny	T Adit	DR0-01 Drainage		Adit	Rex Adit	Adit	Adit
		Year 1	Year 2	Year 1	Year 2			Historic	November
Analyte	Units	AVG	AVG	AVG	AVG	Year 1 AVG	April 2014	AVG	2014
		Т	Т	Т	Т	Т	Т	Т	Т
Aluminum	ug/L	15,750	13,390	20,046	17,960	13,560	32	114	80
Arsenic	ug/L	237	188	5	2	50	3	0.4	202
Cadmium	ug/L	222	255	120	127	165	32	211	19
Copper	ug/L	1,610	1,023	14,613	13,780	4,536	4	13	61
Iron	ug/L	154,000	154,900	4,604	4,111	158,400	25	151	4,480
Lead	ug/L	257	185	9	4	28	430	58	180
Nickel	ug/L	34	35	260	244	38	3	16	<6
Zinc	ug/L	58,350	57,180	21,378	22,950	65,120	6,500	45,594	3,080
Acidity	mg/L	637	667	226	217	NM	<2	NM	12
Alkalinity	mg/L	<1	<10	<10	<10	<5	15	89.0	29
Sulfate	mg/L	1,983	1,116	462	524	1,936	36	255.5	40
рН	su	2.8	2.6	3.1	3.2	3	5.4	6.6	6.2

Study Questions and Goals

Goal is implement passive or semi-passive treatment systems with low maintenance at remote high elevation abandoned mine sites

- 1. What is the <u>metal removal efficiency</u>?
- 2. What is the extent of <u>sulfate reduction</u>?
- 3. What is the necessary BCR hydraulic retention time?
- 4. What pre-treatment methods are needed for different MIW types?
- 5. What is the minimum sulfate required for adequate metal sulfide formation?
- 6. What <u>sulfate addition methods</u> can be used to increase influent sulfate?
- 7. How do lower temperatures effect BCR performance?
- 8. What <u>post-treatment methods</u> can be used to reduce nutrients and increase dissolved oxygen?

Study Test Setup

		Barker-			
	Blue Ledge	Hughesville	Formosa	Bunker Hill	Tenmile
Site	(2012-2013)	(2013 - 2014)	(2013)	(2014)	(2015)
				Rex and	National
	DR-01			Success	Extension
MIW	Drainage	Danny T Adit	Formosa Adit	Adits	Adit
Acidic MIW?	Х	Х	Х		
Laboratory BCR Batch	Х	Х			
Laboratory BCR Column			Х	Х	Х
Field Pilot (Barrel-Scale)	Х	Х	Х		
Liquid BCR Substrate	Х			Х	
Pre-Treatment	Х	Х	Х		Х
Low-Sulfate				Х	Х
Low-Temperature	X	X			Х
Post-Treatment	Х	Х			

- Studies completed between 2012 and 2015
- Various phases of testing based on project status, funding, and goals
- Earlier studies provided lessons learned for later studies
 - Similar MIW types, substrates, flow rates, pre-treatments, etc.

Barker Hughesville, Danny T Year 2 – Barrel Test Setup

Example of complex barrel test setup with pre-treatment

Bunker Hill, Rex Adit – Column Test Setup

Example of column test setup with sulfate addition pre-treatments

Pre-Treatment Methods

- Oxidation/Settling
 - Crucially important for high Al/Fe/Pb waters to maximize metal oxyhydroxide formation and settling
- Successive Alkalinity Producing System (SAPS)
 - Limestone layer overlain by organic substrate
 - Recommend adding inert gravel and/or wood chips to upper organic layer for structure
- Chitorem+Sand+Gravel
 - Construct and operate similar to SAPS
- Alkaline Addition
 - Magnesium hydroxide, sodium hydroxide, lime
 - Requires semi-passive system (e.g., solar, wind, water power) and greater O&M
- Sulfate Addition
 - For low-sulfate type MIWs e.g., less than ~100 mg/L
 - Gypsum cell
 - Magnesium sulfate solution dosing

Evaluating Metal Removal Mechanisms

How do we know metals are removed through sulfate reduction and metal sulfide formation vs. sorption or other precipitation reactions?

- Correlate field and analytical laboratory results with metal removal efficiency (MRE)
- Oxidation-reduction potential (ORP), dissolved oxygen (DO), pH, and temperature
- Sulfide, sulfate, and sulfate reduction rate (SRR)
- Acidity and alkalinity
- Microbiology analysis DNA/RNA
- Organic acids
- Electron microprobe of substrate or precipitate
- Sulfide smell!

Oxidation-Reduction Potential and Dissolved Oxygen

Increased DO and ORP could are stress triggers that effect system performance

- General rule of thumb: < -150 mV ORP conditions amenable to sulfate reduction</p>
- Typical ORP from -200 to -400 mV correlates very well with:
 - Detectable sulfide in the effluent (e.g., >1 mg/L)
 - Positive sulfate reduction rate (e.g., >100 mmol SO₄/m³-day)
 - Alkalinity generation (e.g., >200-300 mg/L)
 - High and consistent metal removal efficiency (e.g., >90%)
- General rule of thumb: DO less than 2-3 mg/L
- Some DO probes can produce unreliable results
- Utilize optical DO meter if possible

Rex Mine – ORP Results

Blue Ledge Year 2 – Eh/pH Diagram for Zinc Species

Sulfate Reduction Rate (SRR) and Sulfide

- Use sulfate reduction rate for design sizing still a good approach after 30 years!
 - Numerous studies have calculated SRR within range of 100 to 1000 mmol SO₄/m³-day
 - ~300 mmol SO₄/m³-day good starting design parameter
 - Calculate BCR reactive substrate volume based on metal load and SRR

$$R_{SO4} = \frac{C_{SO4 IN} - C_{SO4 OUT}}{M_{SO4} \times V_s} \times Q_d$$

 Usually always excess sulfide not bound with metals in the effluent – quickly converts to hydrogen sulfide gas when exposed to atmosphere

Barker Danny T Year 2 – Sulfate Reduction Rate

National Extension – Sulfate Reduction Rate

pH, Acidity, and Alkalinity

- System should be generating enough alkalinity through sulfate reduction to buffer acidic pH, in addition to limestone dissolution
- Acidity in acidic MIW should go to non-detect (typically >4 mg/L)
- Treated effluent pH should be above 6.0 for an acidic MIW (i.e., less than 4 su)
- Difficult to discern how much alkalinity is being generated by sulfate reduction or limestone dissolution
- Acidity can be generated through anaerobic fermentation of carbon sources VFAs
- Evaluate acidity/alkalinity balance for performance

Barker Danny T Year 2 – SAPS/BCR2 pH, Alkalinity, and Acidity

BCR System Stresses

- Oxygen and Acidity (pH, Al, Fe)
 - Increased seasonal acidity and oxygen loads can shock BCR system
 - Acidity loading leads to plugging
 - Use pre-treatment for acidic/low-pH MIWs to reduce acidity and protect BCR
 - Design system based on sulfate reduction rate and metal loading
- Temperature
 - Sulfate reduction slows at lower temperatures
 - Decreased sulfate reduction and metal removal during winter likely – plan for in design

Operations and Maintenance

- Lab Column Limitations
 - MIW chemistry changes during storage
- Acidic MIW issues with plugging of valves and plumbing
- Weekly inspection and sampling highly recommended
- Startup
 - Incubation and startup during warmer weather
 - Manual recycle of MIW helps spread inoculum and saturate pores
 - Provide incubation with no flow (1-2 weeks)
 - Allow at least week or more after flow through startup before first analytical sample
- Study Period
 - Sufficient time to establish sulfate reducing condition reactions
 - At least 3 months recommended

Blue Ledge Year 2 – Dissolved Zinc Concentrations

Substrates

Plant-Based Materials

Variable mix recommended for structure and short-and-long term carbon sources

Manure

Need to optimize inoculum needed while limiting excess BOD and nutrients in effluent (1-10%)

Limestone

- Higher limestone needed for acidic MIWs (20-30%)
- Some limestone still needed for neutral MIWs due to acidity from organic acids

Chitorem

- Effective neutralizing capacity and organic substrate for maintaining sulfate reduction
- No inoculum needed has it's own SRB
- Many potential uses as pre-treatment to BCR or mixed with other BCR substrates
- Hydraulic limitations with fine-grained product (97% < 2mm) recommend larger sized material
- Locality and cost limitations

Ethanol

- Enhanced sulfate reduction rate and smaller footprint
- Potentially less diverse microbial community leads to inability to adapt
- Cost and need for semi-passive dosing system
- Difficult to optimize minimum dose, while minimizing excess BOD in effluent

Questions?

Nick Anton CDM Smith Helena, MT antonnr@cdmsmith.com

