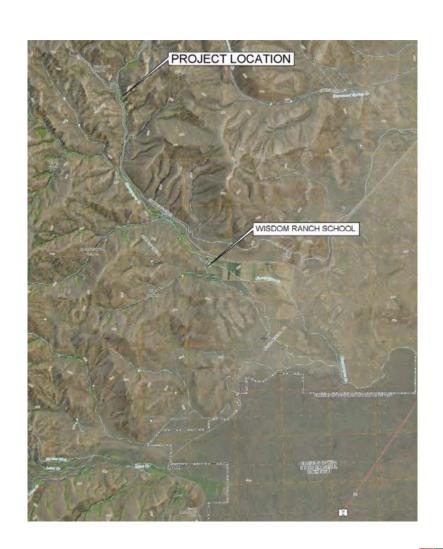
Acid Mine Drainage Passive Bioremediation

Bench Test Proof of Concept: Abandoned Mine, Idaho

David Jenkins, PE 2016 ASMR Conference

Coauthors

Donald Stevens (ECM), Holly Trejo (ECM), James Gusek (Sovereign Consulting), Joseph Larsen (BLM)



Introduction

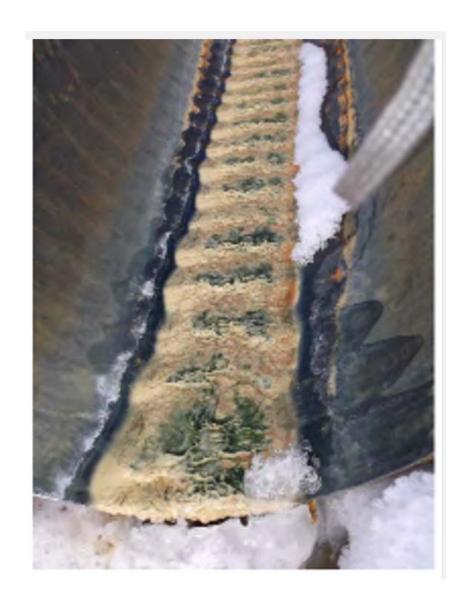
- Abandoned mine site in Idaho discharging acid/metals to a local creek
- Investigate biological phenomenon with potential to bioremediate site at a fraction of expected cost
- Perform bench scale test to understand conditions necessary to engineer full-scale bioremediation

Site Location

Site Details

Environmental Conditions

Statistics	Flow (gpm)	pH (s.u.)	Al (mg/L)	Cu (mg/L)	Fe (mg/L)	Zn (mg/L)
Maximum	7.1	3.37	946	590	2460	134
Average	3.6	3.15	529	194	1321	83
Minimum	1.12	2.8	312	69	427	33
No. of Observations	32	25	39	44	44	44



Avoid costly active treatment via neutralization by "engineering" an apparent natural biological process

Iron and Aluminum Terrace (IAT)

Dynamic Trough Testing

Trough 1: High organics

Trough 2: Non-organic biomat

Trough 3: Anoxic

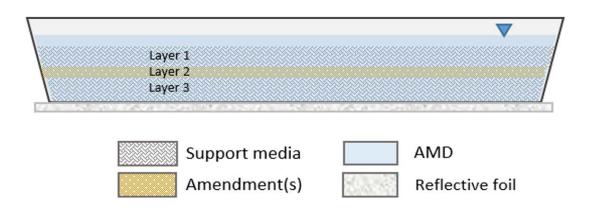
Trough 4: Oxygenated

- Valuable field performance simulation
- Observe physical limitations
- Limited environmental variations

Trough 1

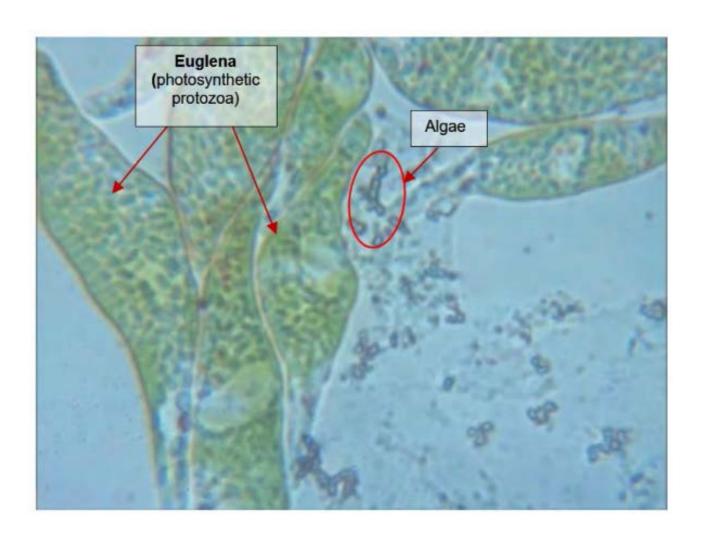
Trough 2

Trough 4


Static Bench Test Objectives

- 1) The effect of metals removal and Δ rate versus retention time;
- 2) The effect of readily available soluble carbon on algae growth and metals removal rate;
- 3) The impact of daylight exposure on metals removal rate;
- 4) The impact of temperature on metals removal rate.

Bench Test Setup


Microcosm				Support	Sampling
Unit	Amendment	Temperature	Sunlight	Media	Events
Tray 1	Organics	Optimum	Yes	Yes	1, 3, 7, 20 days
Tray 2	Glucose/ Organics	Optimum	Yes	Yes	1, 3, 7, 20 days
Tray 3	Organics	Optimum	No	Yes	1, 3, 7, 20 days
Tray 4	Organics	Chilled	No	Yes	1, 3, 7, 20 days

Site Microbiology @ 1000x

Conditions vs. Removal Rate

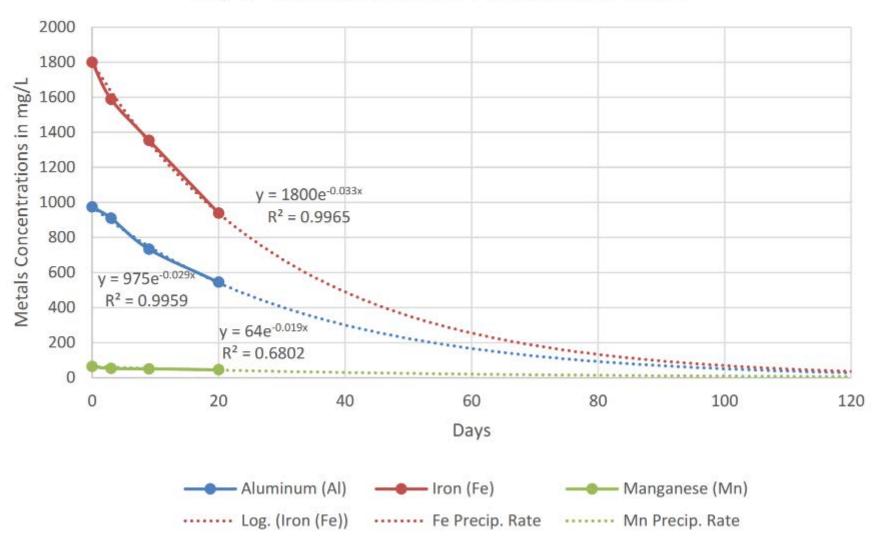
$$C_f = C_0 e^{-kt}$$

$$k = \frac{-ln\left(\frac{c_{ftray}}{c_{0tray}}\right)}{t}$$

Where,

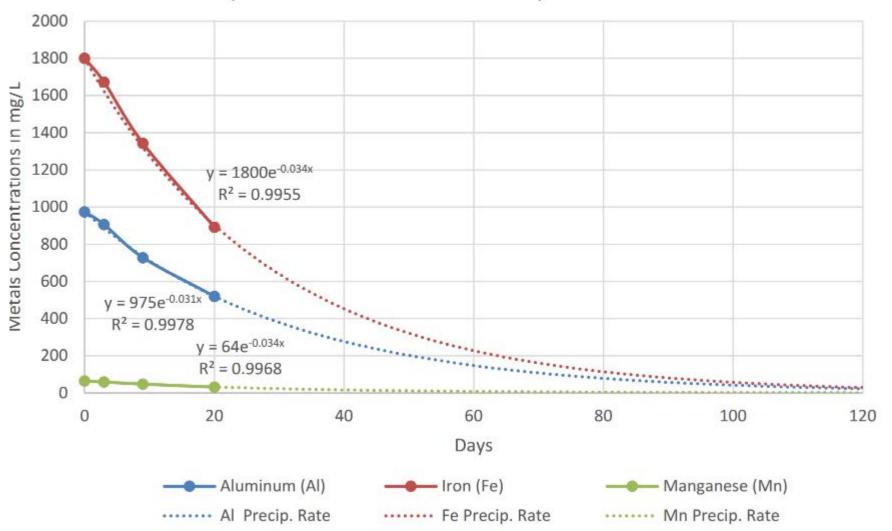
t = time in the tray

 C_0 = starting concentration

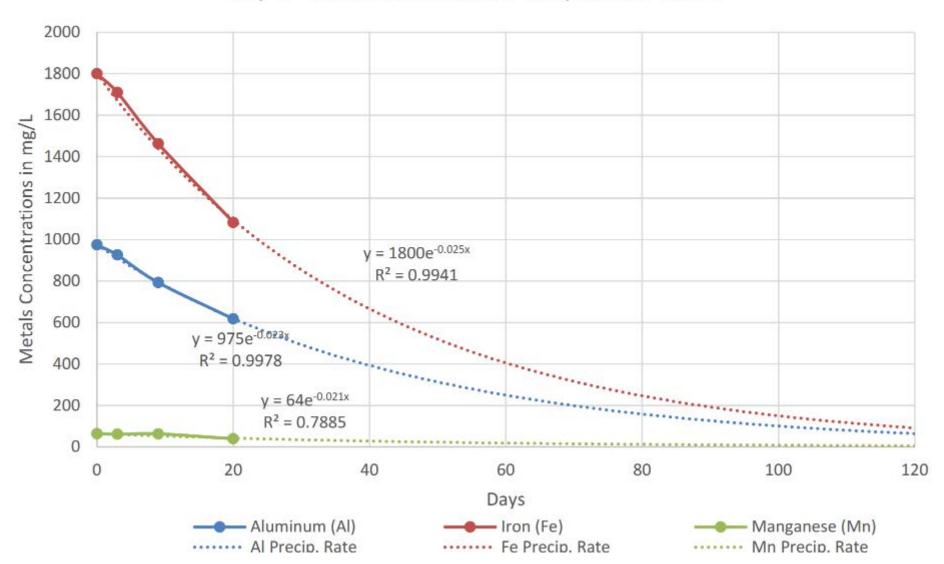

 C_f = concentration at time t

k = precipitation (removal) rate constant

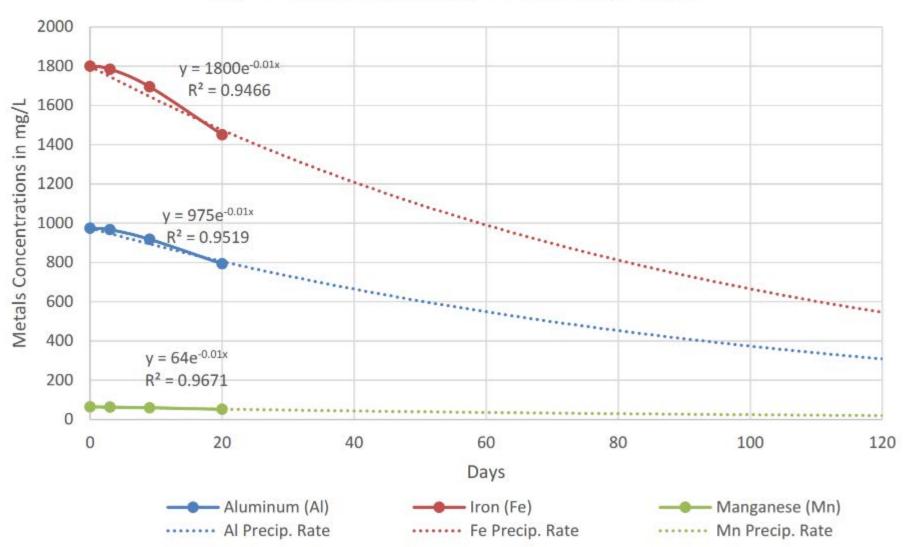
Organics/Sunlight


Tray 1 - Dissolved Metals Precipitation Rates

Glucose/Organics/Sunlight


Tray 2 - Dissolved Metals Precipitation Rates

Organics/Darkness


Tray 3 - Dissolved Metals Precipitation Rates

Organics/Darkness/Chilled

Tray 4 - Dissolved Metals Precipitation Rates

Tray 2: Organics/Glucose Before and After

Performance Summary

Metals Concentration vs Time (corrected for evaporation)							Comormonito	
Tray	Metal	Days of PBR Exposure				C₀e ^{-kt}	Comments	
		0	3	9	20	C ₀ e		
Tray 1	Al	975	910	733	545	0.0294		
Organics only with							Second highest	
sunlight	Fe	1800	1588	1354	939	0.0326	performer	
	Mn	64	54	51	46	0.0187		
Tray 2	Al	975	906	728	520	0.0315		
Organics & glucose with							Highest	
sunlight	Fe	1800	1672	1343	892	0.0345	performer	
	Mn	64	59	48	32	0.0344		
Tray 3	Al	975	926	793	618	0.0228	Thind high oot	
No sunlight	Fe	1800	1710	1463	1083	0.0248	Third highest performer	
	Mn	64	61	63	39	0.0213	periorillei	
Tray 4	Al	975	967	918	793	0.0096	Doorost	
Chilled/ No sunlight	Fe	1800	1785	1695	1451	0.0100	Poorest performer	
	Mn	64	63	60	52	0.0100		

Estimating IAT Retention Time

$$T_{IAT} = \frac{-ln\left(\frac{c_{f_{IAT}}}{c_{0_{IAT}}}\right)}{k}$$

 C_{IAT} = intial concetration into the IAT

 C_{IAT} = design effluent concetration from the IAT

Performance vs. Retention

$$D_{IAT} \times A_{IAT} = T_{IAT} \times f_a$$

 D_{IAT} = Depth of the IAT required to achieve $C_{f_{IAT}}$

 A_{IAT} = Area of the IAT required to achieve $C_{f_{IAT}}$

f_a = flowrate at the adit

Estimating IAT Area

$$A_{IAT} = ln \left[\frac{\left(\frac{c_{f_{IAT}}}{c_{0_{IAT}}}\right)}{\left(\frac{c_{f_{IAT}}}{c_{0_{tray}}}\right)} \right] \times t \times f_{a}$$

Impact of Environmental Conditions

$$C_f = C_0 e^{-\varphi kt}$$

Where $\varphi=$ estimated corrected removal efficiency

Conclusions

- The bench scale test indicated viability of passive bioremediation of metals-impacted AMD
- Temperature change was the most impactful environmental design condition; the other parameters were relatively modest
- Detailed design information on passive bioremediation of AMD can be gathered from an inexpensive bench test (<\$5,000)

Questions

Dave Jenkins, PE

djenkins@ecmconsults.com

