
Reproduction potential and natural canker infection on backcrossed restoration chestnut trees

J. M. Bauman, C. Cochran, J. Chapman, and K.E. Gilland ASMR June 11, 2015

Active Coal Mining in Appalachian

Surface Mining for Coal - Muskingum County, Ohio

1977 - Surface Mining Control and Reclamation Act (SMCRA)

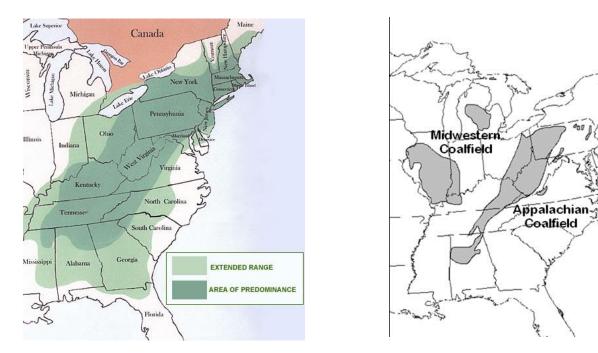
Positives:

- Land Stability
- Erosion control
- Forage land

Negatives:

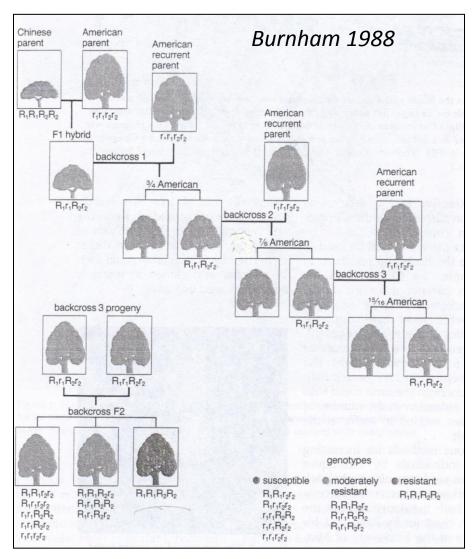
- Invasive species
- Habitat loss
- Arrested
 succession

Appalachian Regional Reforestation Initiative

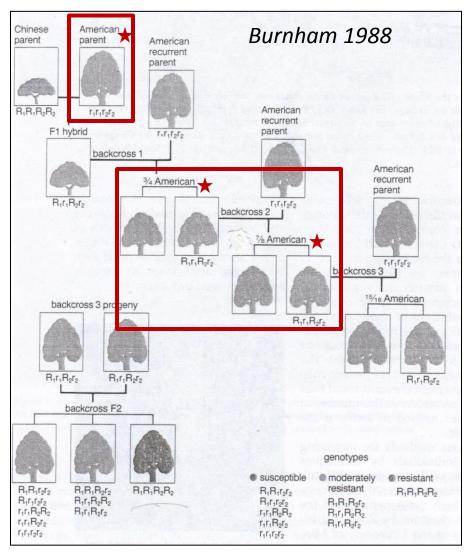

Established trees can accelerate forest succession

- Forestry Reclamation Approach:
 - Appropriate substrate
 - Loose soils
 - Proper ground cover
 - Proper planting methods using a valuable native tree species

Angel et al. 2005; Burger et al. 2005; Groninger et al. 2007; Zipper et al. 2011


Chestnut in Coal Mine Reclamation

- Fast growth rate and tolerance to dry soil conditions
- Fast nut production and habitat creation
- Native range of chestnut overlaps with Appalachian coal sites


McCarthy et al. 2008; Jacobs et al. 2013

American Chestnut in Restoration

American Chestnut in Restoration

Seed lines sampled in this presentation – Suitable for large-scale restoration plantings?

Study Site - Former Surface Mine Land

Site Specifics of Study Plots

Soil parameter	Mean
Physical	
O.M.	1.3%
Sand	60%
Silt	23%
Clay	17%
Chemical	
рН	5.5
Ν	< 2 ppm
Р	8ppm
К	78ppm
Са	720 ppm
Mg	182 ppm
Mn	3.8ppm

- Historically forestland
- Surfaced mined and reclaimed 1970s
- Sandy loam with pH conducive for chestnut
- Low in Organic Matter and Macronutrients
- Low in soil microbial activity
- Highly compacted with invasive species

Field Testing Planting Methods

Planting Methods

1,187 chestnuts mixed planting: Pure American, BC_2F_3 , and BC_1F_3 as 1 - year-old bare root seedlings

Year 1: Establishment

Ripped plots: pure American chestnut (left) and B₁F₃ (right)

Year 3: Seedling Growth

Year 4: Reproduction

Aerial view after 4 years

Year 6: Growth and Establishment

High growth (2 m) and survival (80%) in plots that applied deep-soil ripping (~ 1 m depth)

Year 6: Growth and Establishment

Pure American chestnuts were taller, however, the B₂F₃ chestnuts had greater survival

Vegetation Composition

Species name	Common Name	% Cover
Festuca arundinacea	Tall Fescue	29.0
<i>Lespedeza cuneata</i> (Dumont) G. Don	Chinese Lespedeza	16.3
Solidago canadensis L.	Canada Golden Rod	10.8
Rudbeckia hirta L.	Black Eyed Susan	10.7
<i>Festuca arundinacea</i> Schreb.	Tall Fescue	6.5
Achillea millefolium L.	Yarrow	4.1

- 34 species were documented across treatments this study
- Five plant species made up 70% of the vegetation sampled
- The two most abundant herbaceous plants were reclamation species
- Two native species were abundant in survey
- Ripping in absence of plow/disking promoted species evenness
- One very interesting plant found in vegetation sample...

Next Generation Chestnut

Current Study:

Objectives:

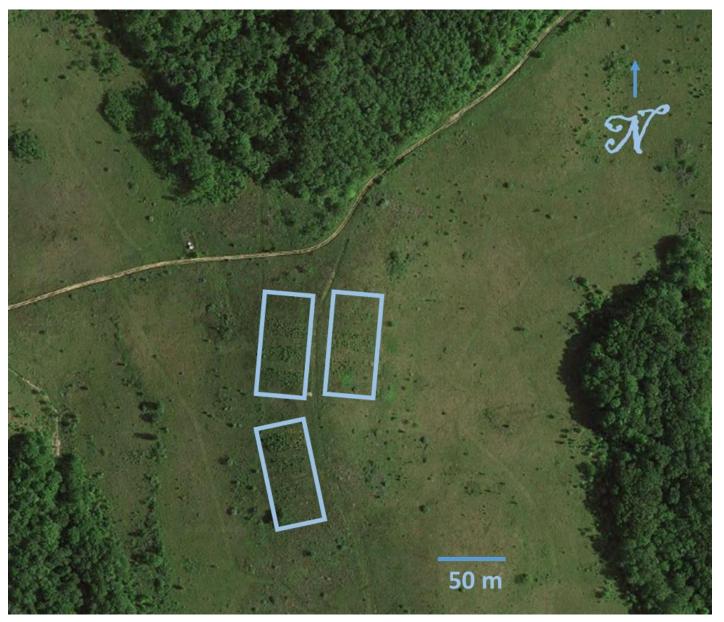
Reproduction potential of soil treatments and chestnut lines

Measured via flower production in June and chestnut production in October on 7-year-old chestnuts

Flowers and Burs by Treatment

Treatments	% Flowering	n Surviving
	trees	trees
Control	41.2 ^a	51
PD	51.8 ^a	193
R	57.9 ^a	176
RPD	51.3ª	226
Treatments	Ave. Bur	n Surviving
	Count	trees
Control	3 ^a	51
PD	74 ^b	193
R	101 ^b	176
RPD	113 ^b	226

All trees flowered in all the treatment plots, however, chestnut trees in control plots did not produce burs


Flowers and Burs by Chestnut Type

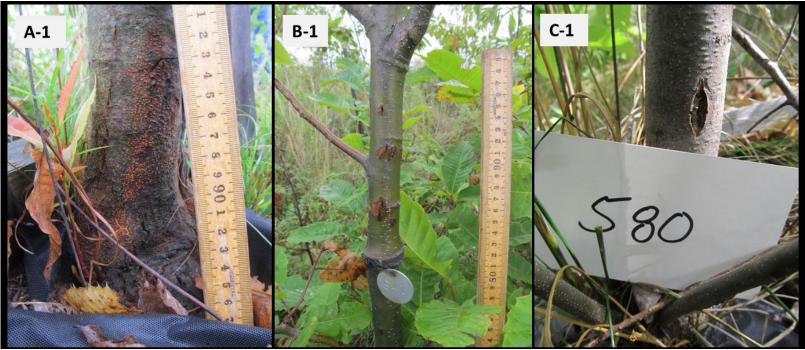
Chestnut	% Flowering	n Surviving
Tree Type	trees	trees
Pure Am	53.8 ^a	253
BC1	57.8 ^a	142
BC2	47.6 ^a	252

Chestnut	Ave. Bur	n Surviving
Tree Type	Count	trees
Pure Am	127 ^a	253
BC1	98 ^a	142
BC2	73 ^a	252

No hybrid vigor observed with regard to bur production after 6 field seasons. Possible *in situ* backcrossing?

Potential for Chestnut Dispersal

Chestnut Blight in Restoration


Few stem cankers observed after 4 field seasons

Survey conducted on all surviving trees after 5 and 6 growing seasons

Chestnut blight canker (*Cryphonectria parasitica*) on chestnut basal stem

Stem Cankers after 6 Field Seasons

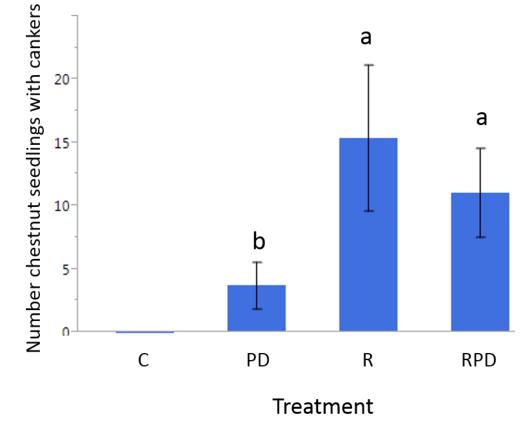
Evident stroma

Necrotic tissue with no stroma

Callous tissue with no evident necrosis or stroma

A sub-sample of 33 stem cankers representing all canker forms were selected for culturing.

Stem Cankers after 6 Field Seasons

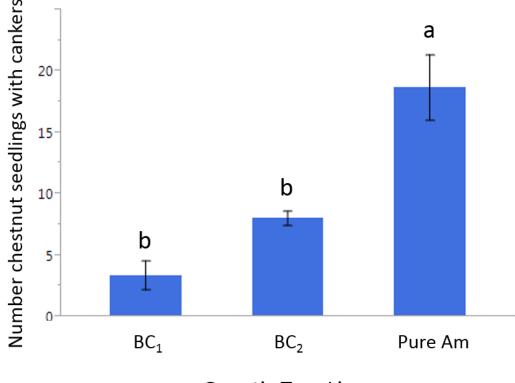


Canker Production - Treatment

When soil treatments were compared differences existed:

Ripped plots had more canker incidence

Stem basal diameter did have a significant positive impact on canker incidence



Canker Production – Tree Type

There were differences in canker incidence among genetic lines:

Pure American (26%) BC₂F₃ (9%) BC₁F₃ (6%)

No significant differences between the hybrids

Genetic Tree Lines

Chestnut Blight in Restoration

- Chestnut blight will drive selection of genotypes that display varying levels of blight-resistance
- Mortality from blight can facilitate tree diversity in a developing stand
- Nutrient pools from dead plant material and active soil organisms may aid in seedling recruitment of other native forest species?

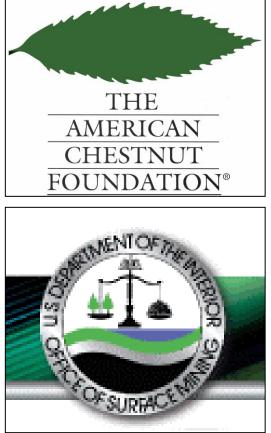
Research Summary

- Ripping yielded greater survival and growth
- Significantly less chestnut blight on hybrids
- Greater seed production in treatment plots
- 862 burs produced during the sixth growing season

Acknowledgements:

Research Support:

- Dr. Carolyn Keiffer, Miami University
- Dr. Bill MacDonald, WVU
- Dr. Brian C. McCarthy, Ohio University


Student Support:

- Caleb Cochran
- Sarah Francino
- Andrea Renshaw

Field Support:

The State Chapter of American Chestnut

Funding:

Thank you!