Using Texas Rapid Assessment Method for Premine and Postmine Wetland Evaluations

HR

June 2013 ASMR Meeting

Presented by:

Eddie Bearden, CPSS, PG John Wooten, Ecologist Ricky Wilson, Ecologist

HDR Engineering, Inc.

US Army Corps of Engineers ®

TXRAM Team

Lead Agency - U.S. Army Corps of Engineers, Fort Worth & Tulsa Districts, Regulatory <u>Prime Consultant</u> – HDR Engineering, Inc. <u>Technical Review Consultants</u> – IES & SWCA <u>Reviewing Agencies</u> – Federal: EPA, USFWS State: TPWD, TCEQ, RCT

HR ONE COMPANY *Many Solutions*®

SVVCA® ENVIRONMENTAL CONSULTANTS Sound Science. Creative Solutions.®

Background – Regulatory Driver

USACE – Clean Water Act, Section 404 permitting:

- Compensatory mitigation required for some projects
 Offset adverse impacts to waters of the U.S.
 - Restore, establish, enhance, or preserve aquatic resources
- Mitigation for "functions" of waters of the U.S.
- Appropriate assessment method to determine mitigation requirements (33 CFR 332.3[f][1])

Background - Challenges

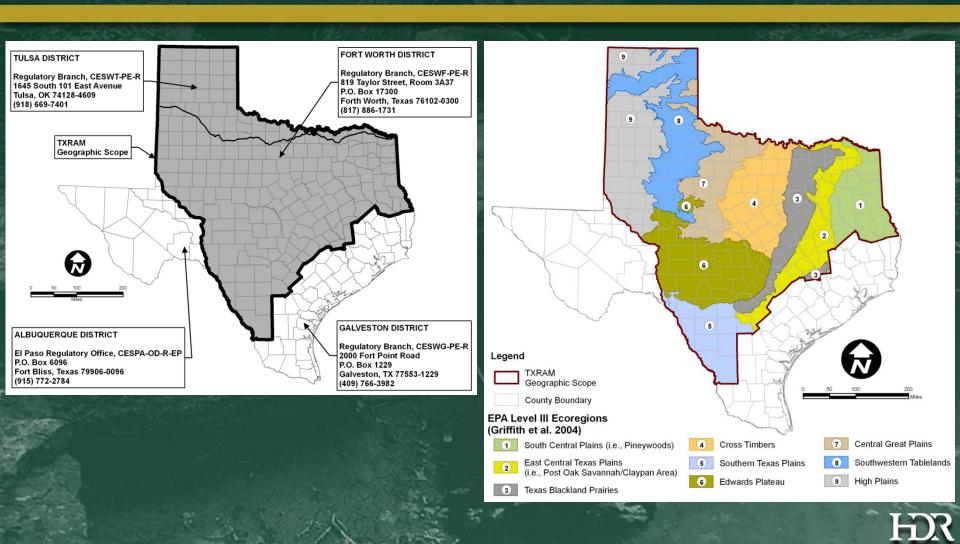
USACE Fort Worth & Tulsa (within Texas) Districts

- No standard assessment method prior to 2011
- One HGM guidebook (forested wetlands only) & several other methods
- Inconsistency in assessments for permitting and mitigation calculations
- Inconsistency in mitigation banking evaluation / credit ratios (2008 Mitigation Rule)

TXRAM Objectives

- Rapid, repeatable, field-based method
- Measure multiple observable metrics
- Single score of condition (health)
- Developed to fit USACE 404 Regulatory program in Fort Worth and Tulsa districts

Background – Intended Use


Evaluation of Waters of the U.S.

- Streams (ephemeral, intermittent, and perennial)
- Wetlands abutting, adjacent, and/or proximate to waters

*No Impoundment Module

Geographic Scope

Intended Uses

- Improve impact assessment
- Compare alternatives (sites or designs)
- Assess premine waters to be impacted and postmine waters for mitigation
- Monitor changes over time
- Measure ecological "lift" of future conditions (mitigation)

Assessment Extent and Timing

- Varies by project type
- Depends on project objective, schedule, planning
- Example: during or after delineation
- Area evaluated to determine score:
 - Stream Assessment Reach (SAR)
 - Wetland Assessment Area (WAA)
- Guidelines encourage consistency

- Stream Assessment Reach (SAR)
- Stream types
 - 3 based on water source and duration of flowPerennial, intermittent, and ephemeral

	Core Elements	Metrics	- The I
		Floodplain Connectivity	
1.55	Channel Condition	Bank Condition	
		Sediment Deposition	
	Riparian Buffer Condition	Riparian Buffer	了潮
	In-stream Condition	Substrate Composition	
	In-stream Condition	In-stream Habitat	
	Lhudrologio Condition	Flow Regime	
	Hydrologic Condition	Channel Flow Status	and and a second se

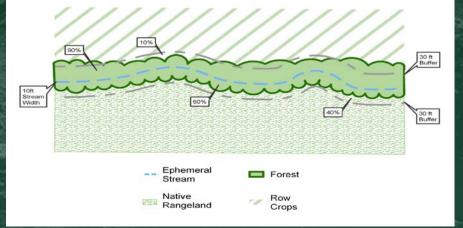
Metrics are scored 0—5.

• Floodplain Connectivity

1

• Bank Condition

• Sediment Deposition



• Riparian Buffer Condition

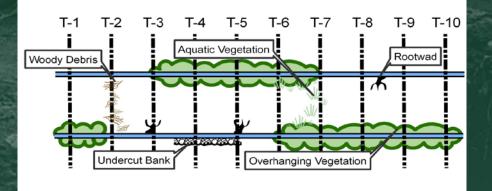
Left Bank		•			-	
Buffer Type	Canopy Cover	Vegetation Community	Land Use	Score	Percentage of Area	Subtotal
1. Forest	75	Native	Low	5	90	4.5
2. Row Crops	0	Non-native	Inten	0	10	0.0
-	•	•			Score:	4.5

Score:

Right Bank

Buffer Type	Canopy Cover	Vegetation Community	Land Use	Score	Percentage of Area	Subtotal
1. Forest	75	Native	Low	5	60	3.0
2. Native Rangeland	0	Native	Low	3	40	1.2
		-			Feerer	4.2

• Substrate Composition



• In-stream Habitat

Habitat Type	T1	T2	T3	T4	T5	T6	Π	T8	T9	T10	T11	T12	T13
Undercut Banks				Х	Х								
Overhanging Vegetation	Х		Х	Х	Х	Х	Х	Х	Х	Х			
Rootmats													
Rootwads			Х		Х								
Woody/Leafy Debris		Х											
Boulders/Cobbles													
Aquatic Macrophytes						Х	Х						
Riffle/Pool Sequence													
Artificial Habitat Enhancement													
Other													
Total No. Present	1	1	2	2	3	2	2	1	1	1			

Average: 1.6 Score: 2

• Flow Regime

• Channel Flow Status

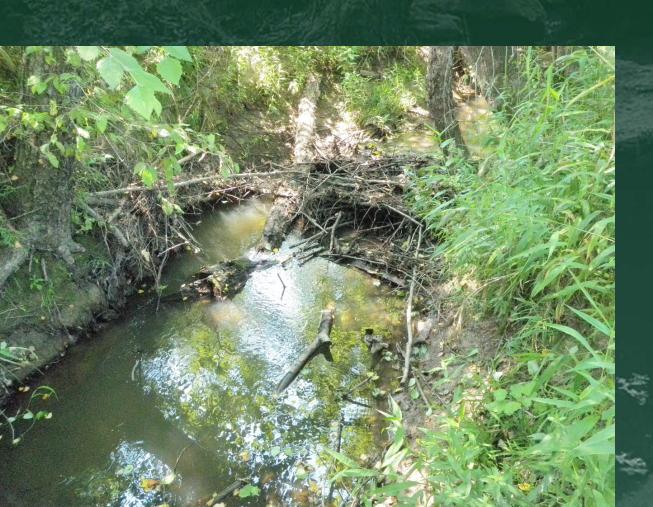
3

HDR

Premine Ephemeral Stream

Overall TXRAM Score: 17

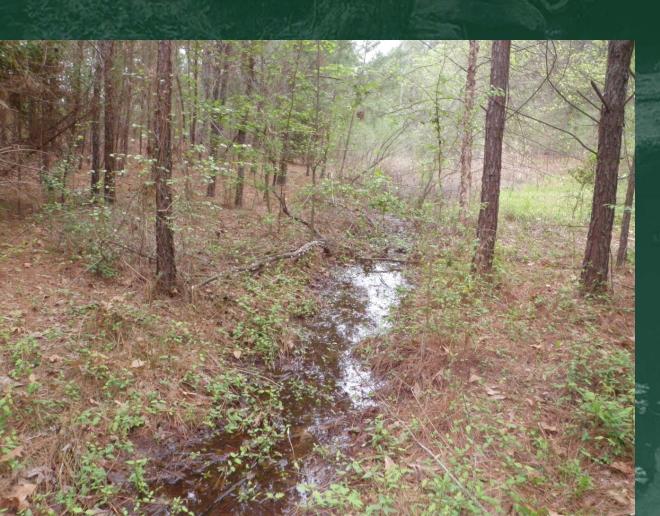
HR


Premine Ephemeral Stream

Premine Intermittent Stream

Premine Perennial Stream

Postmine Ephemeral Stream


Postmine Ephemeral Stream

Overall TXRAM Score: 43

HR

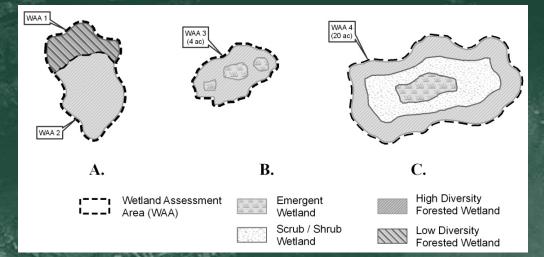
Postmine Ephemeral Stream

Overall TXRAM Score: 50

HDR

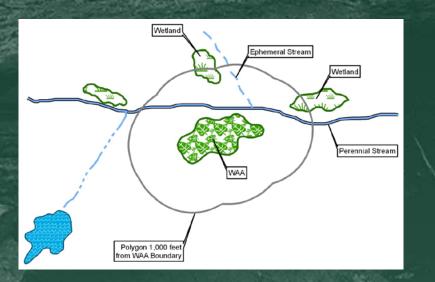
Postmine Intermittent Stream

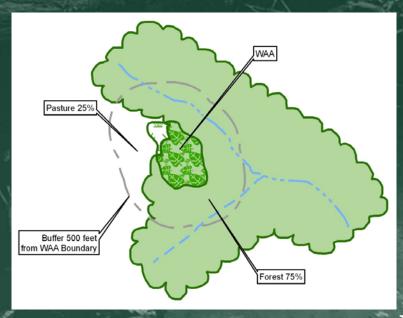
Postmine Intermittent Stream



- Wetland Assessment Area (WAA)
- Wetland Types
 - 4 defined based on hydrogeomorphic approach
 - Riverine, slope, lacustrine fringe, depressional

- WAA boundary
 - Encompass uniform hydrologic processes
 - Separate for different disturbance or stress
 - Not at vegetation community boundaries
 - Not normally at artificial boundaries


H


Co L H Phys Bio		
Image: set of the set of th	S 2 Martin Barrier	Со
		ł
Bio		Phys
		Bio

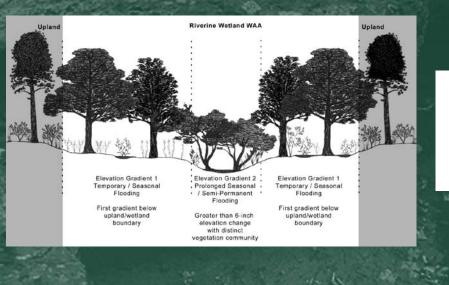
Core Elements	Metrics
Landscapa	Connectivity
Landscape	Buffer
	Water source
Hydrology	Hydroperiod
	Hydrologic flow
	Organic matter
Soils	Sedimentation
	Soil modification
	Topographic complexity
Physical Structure	Edge complexity
	Physical habitat richness
	Plant strata
	Species Richness
	Non-native/invasive
	infestation
Biotic Structure	Interspersion
	Strata overlap
	Herbaceous cover
	Vegetation alterations

Landscape

 Connectivity
 Buffer

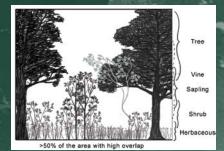
Hydrology

 Water source
 Hydroperiod
 Hydrologic flow

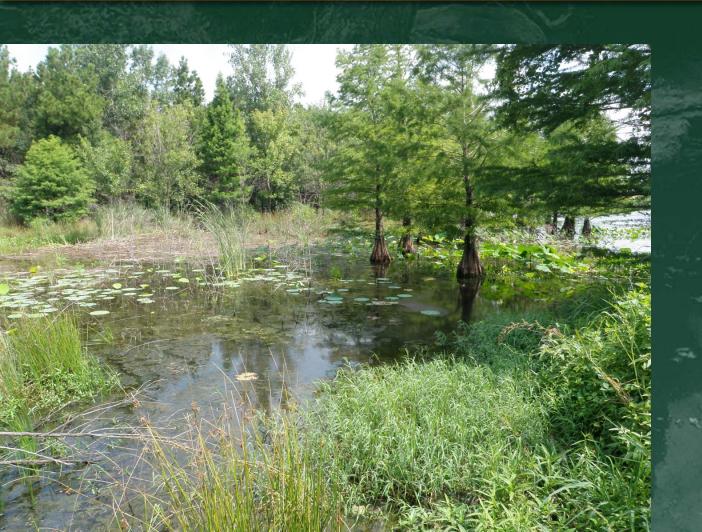

Soils
Organic matter
Sedimentation
Soil modification

Physical Structure

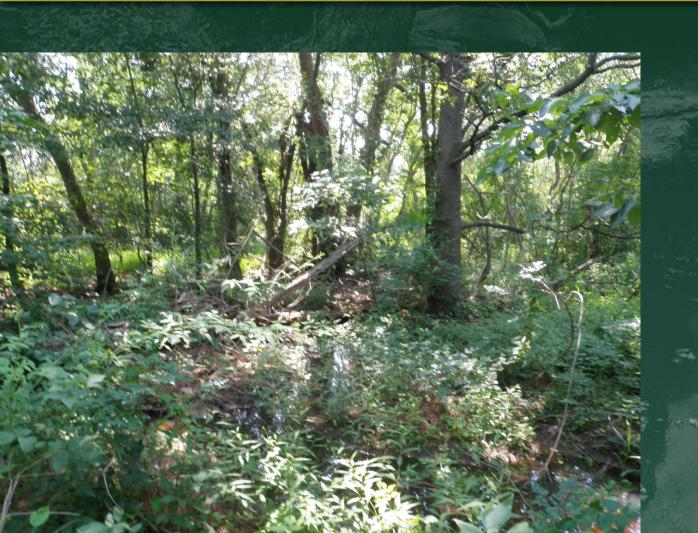
 Topographic complexity
 Edge complexity
 Physical habitat richness



• Biotic Structure – Plant strata - Species richness - Non-native/invasive infestation - Interspersion – Strata overlap – Herbaceous cover - Vegetation alterations

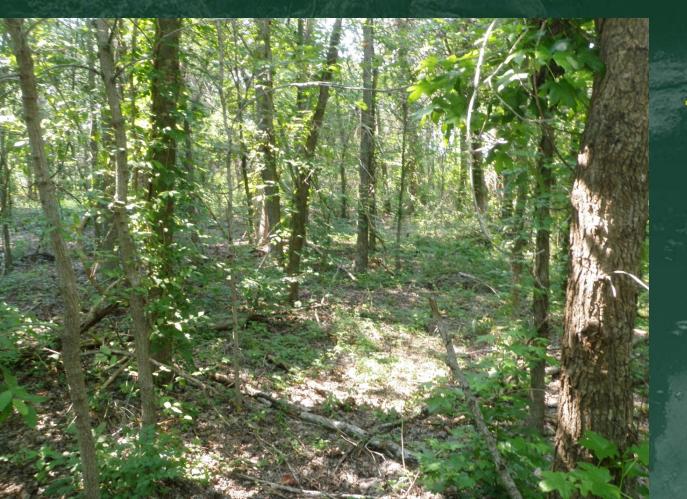


Premine Riverine Wetland



Premine Lacustrine Fringe Wetland

Overall TXRA M Score: 62


Premine Riverine Wetland

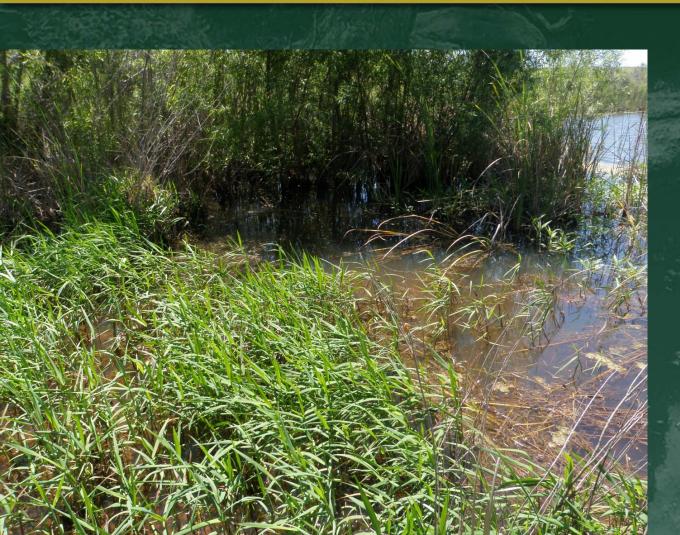
Overall TXRA M Score: 67

Premine Slope Wetland

Overall TXRAM Score: 69

Premine Lacustrine Fringe Wetland

Overall TXRAM Score: 75


Overall

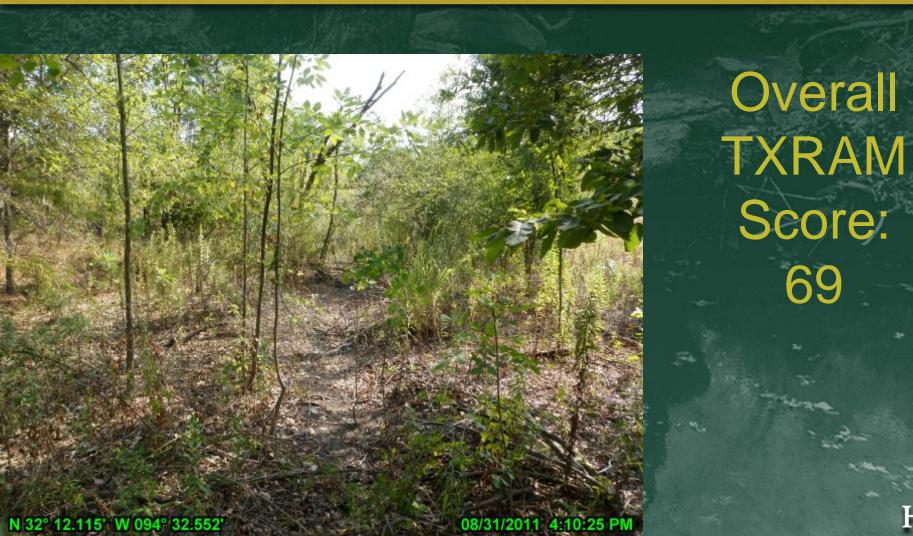
Score:

60

Postmine Lacustrine Fringe Wetland

Overall TXRAM Score: 60

Postmine Riverine Wetland



Overall TXRAM Score: 63

Postmine Riverine Wetland

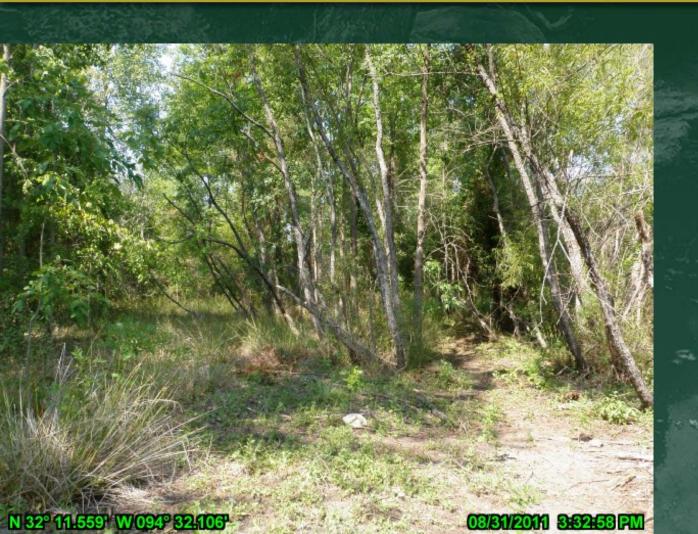
Score:

69

Postmine Lacustrine Fringe Wetland

Overall TXRAM Score: 71

Postmine Slope Wetland



Overall TXRAM Score: 71

Overall TXRAM Score: 72

Postmine Riverine Wetland

Overall TXRAM Score: 74

Postmine Lacustrine Fringe Wetland

77

N 32° 12.677' W 094° 32.326'

08/29/2011 5:48:24 PM

Summary of Premine and Postmine TXRAM Scores

Resource Type	Average Premine Score	Average Postmine Score	
Perennial Stream	67	64	
Intermittent Stream	55	64	
Ephemeral Stream	39	47	約り
Depressional Wetland	69	73	ž
Lacustrine Fringe Wetland	72	72	
Riverine Wetland	74	73	
Slope Wetland	72	71	1

TXRAM Applications

- Avoid or minimize impacts to resources with higher scores
- Determine "functional loss" / debits for impacted resources
- Compare premine scores with projected postmine scores to demonstrate suitable mitigation replacement for impacts

Summary

- TXRAM is used for premine and postmine assessment of waters in the Fort Worth District
- TXRAM demonstrates adequate compensatory mitigation
- Similar approach may be useful in evaluating mitigation in other Districts

