Switchgrass and Miscanthus Yields on Reclaimed Surface Mines for Bioenergy Production

Steffany Scagline, Jeff Skousen, and Thomas Griggs Division of Plant and Soil Sciences West Virginia University

Reasons for turning to Biofuel:

- 1. High Energy Prices
- 2. Energy Independence
- 3. Concerns About Petroleum Supplies
- 4. Greater Recognition of Environmental Consequences

Figure 1. Total U.S. Greenhouse gas emissions by economic sector in 2013 (EPA, 2013).

Biofuels & Bioenergy

Carbon sources derived from photosynthesis

Less GHG emissions

Less dependence on foreign sources for energy

Supports rural economics

Currently mandated by congress

Energy Independence and Security Act 2007 (EISA)

- –Increase energy security and efficiency
 –Revised RFS mandates the use of 36
 BGY of renewable fuels by 2022
 - 16 BGY <u>cellulosic</u> biofuels
 - Corn stover, woody materials, perennial grasses, etc..

Primary Ethanol Feedstock in U.S. is Corn

+ High carbohydrate yield & multiple uses

– Annual crop that has large nutrient requirements

– Grown on prime agricultural land

– Food vs. Fuel Conflict

• 40% of corn grain in the U.S. was used for ethanol and distiller grains

- 99% of ethanol was produced from corn
 - World population is >7 billion
- Malnutrition: approximately 800 million

Cellulosic Crops instead of Food Crops Marginal Land instead of Farmlands

Starch/Sugar based Feedstocks:

- Corn
- Wheat
- Sugarcane

Cellulosic Feedstocks:

- Corn Stover
- Cereal Straws
- Woody Biomass
- Perennial Grasses

Cellulosic Ethanol Feedstocks

- Lignocellulose is the only feedstock currently available in sufficient quantities to meet renewable energy goals.
 - Can be produced to replace one-third of domestic gasoline usage on an energy basis.

Switchgrass & Miscanthus

- Mostly all bioenergy crops differ in quality
- Techniques are needed to assess quality of biomass in a fast, inexpensive method with high accuracy
- Producers must know the quality of their crop before they can take it to a refinery
- Help in the breeding process for larger and higher quality bioenergy crop selection
- **NIRS** is accurate, reliable, fast, non-destructive, and inexpensive

- Near-Infrared Reflectance Spectroscopy (NIRS)
 - Chemical constituents are quantified in a sample based on their spectral characteristics
 - Amount of constituent is predicted based on the samples near-infrared reflectance spectra
 - Equations used to fit spectra to a calibration set
- Near-infrared reflectance spectra profiles are determined
- Prediction equations are developed and validated using mathematical and statistical procedures

Bioenergy Crops:

- Grown on land NOT used for food production
- Sustainable alternative energy sources that can grow on marginal lands
- Reclaimed mine lands!
- 54,000 acres of land reclaimed in Appalachia in 2010 alone
- 75% of land is reclaimed to pasture/hayland

Much of this land is left unproductive or unmanaged!

Post-mining Land Use: **Biofuel Production**

- Good road networks
- Access to transportation hubs
- Large uninterupted tracts
- Not previously agricultural land

Switchgrass (*Panicum virgatum*)

- Warm-season perennial
- Native to most of North America
- Two distinct ecotypes
 - Upland & Lowland
- Produce large quantities of biomass on marginal soils
- Ability to store carbohydrates and other nutrients for regrowth
- Dense rooting systems
- Ability to produce average yields of 5.2 to 11.1 Mg ha⁻¹when grown on marginal lands

- Kanlow & BoMaster variety
 - Lowland species
 - Tetraploid (36 chromosomes)
 - Sod former
 - Strongly rhizomatous
 - 6 to 8 ft tall when mature
 - Deep roots (10 ft or more)
 - Adapted better to flood plains and low-lying areas
 - Taller with larger and thicker stems

Fall 2014

17

Miscanthus (*Miscanthus x giganteus*)

- Warm-season C₄ perennial
- Native to Asia and Africa
- Sterile hybrid (M. sacchariflorus and M. sinensis)
- **Growth comes from rhizomes**
- Reaches heights of 3 to 3.5 m
- **Deep rooting systems**
- Stores nutrients in crowns and roots for regrowth in spring Stands have life spans up to 15 to 20 yrs with minimal cultural inputs
- High yields have been shown to range from 10 to 40 Mg ha⁻¹ throughout Europe

Miscanthus Continued

Figure 3. Approximate growing range of Giant Miscanthus in the U.S. (Heaton et al., 2014).

Example of "Ideal" biofuel crop

Objectives:

- Determine yields of:
 - Miscanthus: Public and Private
 - Switchgrass: BoMaster and Kanlow

 Determine theoretical ethanol production (TEP) of Miscanthus and switchgrass varieties

Site Description:

- Plots were established at Alton
- Previously surface mined area of 160 ha located in Upshur County, WV

Alton

Reclaimed in 1985 -15 cm soil placed over mixed overburden -Grass and legume species planted -Soils fertilized and limed Roughly 10 ha chosen for study site Planting began in spring of 2010

Experimental Design

- Completely randomized design
- Cultivars were randomly assigned and established in 0.4-ha plots
- Replicated 5 times for a total of 20 plots

Figure 4. Alton site location of 0.4-ha plots of switchgrass (Kanlow and BoMaster) and Miscanthus (Public and Private).

 Kanlow and BoMaster switchgrass cultivars were no-till drilled in at rate of 11 kg ha⁻¹ PLS (Ernst Conservation Seeds)

Panicum virgatum, 'Kanlow'

9006 Mercer Pike, Meadville, PA 16335-9299

Net Weight:	47.995 lb	Pure Seed: Other Crop:	93.40%
Lot Number:	FFC6098	Inert Matter: Weed Seed:	6.57% 0.01% 77.00%
Date Tested: Production	February 2010	Germination. Hard Seed:	0.00%
Origin: Genetic Origin:	KS	Dormant:	10,00%

This seed has been treated with GAUCHO XT FUNGICIDE/INSECTICIDE. Do not use for feed, food, or oil purposes. Store away from feeds and foodstuffs. Exposed treated seed may be hazardous to birds. Dispose of all excess seed and packaging to burial away from bodies of water. Cover or incorporate spilled treated seeds.

Experimental Design Continued

• Public and Private sterile Miscanthus varieties were planted as sprigs at a rate of 12,300 plugs ha⁻¹ (Mendel Biotechnology)

- Clipping began in October of 2011, two years after establishment and each year thereafter
- Clipped by hand to a 10-cm stubble height
- All biomass was dried at 60°C for 48 hours to a constant weight
- DM yield was determined and converted to Mg ha⁻¹

- NIRS
 - Biomass samples were ground to a 2-mm particle size using a Wiley Mill
 - -Packed into borosilicate 2 dram glass vials
 - Shipped to NREL in Colorado for chemical constituent analysis
 - Glucan, Xylan, Lignin, & Ash

*Results were converted to TEY (L Mg⁻¹) and then multiplied by biomass to get TEP (L ha⁻¹) for each cultivar

- Ex. Conversion calculation:
 - Hexose Sugar
 - (377 mg g⁻¹ Glu x 0.57) x 1.267 L kg⁻¹ = 272 L Mg⁻¹ Glu
 - Pentose Sugar
 - (249 mg g⁻¹ Xyl x 0.58) x 1.267 L kg⁻¹ = 183 L Mg⁻¹ Xyl
 - $-272 \text{ L} \text{ Mg}^{-1} + 183 \text{ L} \text{ Mg}^{-1} = 455 \text{ L} \text{ Mg}^{-1} \text{ TEY}$
 - 455 L Mg⁻¹ TEY x 7.91 Mg ha⁻¹ (Kanlow biomass) = 3,599 L ha⁻¹ TEP for Kanlow

Results & Discussion

Soil analysis:	:					
Plant						
Species	pН	CEC	Mg	Ca	Κ	Р
		μS cm ⁻¹	c1	mol ⁺ kg	1	mg kg ⁻¹
Switchgrass		-		-		
Kanlow	6.5	23.7	0.55	2.6	0.18	37
BoMaster	6.8	19.9	0.21	3.9	0.13	23
Miscanthus						
Private	6.7	15.9	0.18	3.9	0.16	23
Public	7.2	16.7	0.43	3.4	0.13	19

Results and Discussion Continued

Biomass

Biomass:

Year				
	Mg	ha ⁻¹		
2011	2012	2013	2014	
2.2 (2.0)	5.0 (3.0)	7.0 (6.6)	14.4 (7.8)	
6.5 (5.8)	15.5 (10.4)) 11.1 (6.8)	13.7 (5.7)	
		XSI SSAI	ASKA AN	
			XINKI	
	XX	AAAAAA	X ALA	
	2011 2.2 (2.0) 6.5 (5.8)	$\begin{array}{c} Y \\ Mg \\ 2011 & 2012 \\ 2.2 & (2.0) & 5.0 & (3.0) \\ 6.5 & (5.8) & 15.5 & (10.4) \end{array}$	Year $ Mg ha^{-1}$ 2011 2012 2013 $2.2 (2.0)$ $5.0 (3.0)$ $7.0 (6.6)$ $6.5 (5.8)$ $15.5 (10.4)$ $11.1 (6.8)$	

Results & Discussion:

Plant Species	Biomass		TEY	TEP	
Switchgrass	-Mg ha ⁻¹		L Mg ⁻¹	L ha ⁻¹	
Kanlow	7.9 (2.6)		473 (10.9)	3,700 (1,200)	
BoMaster	7.3 (3.5)	*	457 (6.25)	3,300 (1,700)	
Miscanthus					
Public	14.4 (7.8)		455 (8.21)	6,500 (3,800)	
Private	13.7 (5.7)		461 (9.68)	6,300 (2,700)	

Figure 7. Theoretical ethanol production of switchgrass and Miscanthus at Alton, WV.

How do they measure up?

	Harvestable			
	Biomass	TEY	TEP	Million Hectares
Feedstock	Mg ha ⁻¹	L Mg ⁻¹	L ha ⁻¹	Needed for RFS
Corn grain	10.2	418	4,266	31
Corn stover	7.4	379	2,805	47.2
Corn total	17.6	402	7,071	18.7
Switchgrass	10.4	379	3,937	33.7
Miscanthus	29.6	378	11,205	11.8

(Heaton et al., 2008)

				Million Hectares
				Needed for 35
	Harvestable Biomass	TEY	TEP	billion gallon of
Feedstock	Mg ha-1	L Mg ⁻¹	L ha-1	Ethanol
Corn grain	10.2	418	4,266	31
Corn stover	7.4	379	2,805	47.2
Corn total	17.6	402	7,071	18.7
Switchgrass	10.4	379	3,937	33.7
Miscanthus	29.6	378	11,205	11.8

Reclaimed Mine Land:

				Million Hectares
	Harvestable Biomass	TEY	TEP	Needed for 35 billion
Feedstock	Mg ha ⁻¹	L Mg ⁻¹	L ha ⁻¹	gallon of Ethanol
Switchgrass	7.6	465	3,500	37.9
Miscanthus	14.1	458	6,400	20.7

Conclusions

• Both species and varieties successfully established on a reclaimed surface mine

 Switchgrass and Miscanthus demonstrated high yields of biomass production (>5,000 Mg ha⁻¹)

Successful post-mining land use!

Conclusions Continued

Miscanthus produces greater TEY and TEP than corn grain and corn stalk on reclaimed mine land!

• Sustainable option for future energy demands that will not displace food production!

Acknowledgements

The authors would like to thank:

- Mr. Ken Ellison, West Virginia Department of Environmental Protection, for providing funding for this project.
- Mr. Richard Herd and Dr. Paul Ziemkiewicz, Water Research Institute at West Virginia University, for initiating this project.
- Mr. Mike Reese and Mr. Bill Snyder for planting seeds/rhizomes and maintenance of this site.
- Graduate students Travis Keene, Mike Marra, and Carol Brown for their work on this site.
- Andrew Bierer, Oluwatosin Oginni, Sohrab Rahimi, and Kara Dallaire for helping collect samples.

Questions?

Soil Testing

- Soil samples were taken in 2009 to a depth of 10 cm
- Samples were dried and rocks were removed
- Fine material (< 2mm) was dried and used for analyses
- pH determined on a 1:1 mixture with deionized distilled water with a pH meter
- Soil extraction done using Mehlich 1 solution *(0.05 mol L⁻¹HCL and 0.025 mol L⁻¹ H₂SO₄)
- Solution analyzed with an emission spectrophotometer for:
 P, K, Ca, Mg, Al, Ba, Fe, and Mn
- Mean values were determined for each plot and averaged for species

Figure 2. Simplified NIRS example.

• NIRS is able to detect hemicellulose, cellulose, and lignin because they contain hydrogen-bearing functional groups (-CH, -OH, -NH).

Near-IR Absorption Bands

Steps for Biochemical Conversion:

Pretreatment

- Opens up plant cell wall structure
- Allows enzymes to access structural carbohydrates

• Enzymatic Saccharification

- Hydrolytic enzymes digest pretreated biomass
- Extract fermentable sugars

• Fermentation

- Released sugars are fermented to ethanol by distillation
- Product Recovery
 - Recovery of ethanol by distillation

- **1.267 comes from the specific volume of ethanol which is 0.789 g mL-1
- so 1/0.789 g mL-1 = 1.267 mLg-1 ethanol.
- **0.57 and 0.58 are ethanol conversion factors for cellulose (glucose) and xylan respectively. These values arise from the weight gain associated with hydrolysis (polysaccharide to monosaccharide for fermentation).