A Review of the Literature Pertaining to Passive and Hybrid Treatment Systems for Removal of TDS from Mining Impacted Waters

ZACHARY KEMAK, GREGORY BOARDMAN, STEVEN COX, JEFF PARKS, CATHERINE GREY, KRISTEN GUNTHER

CIVIL AND ENVIRONMENTAL ENGINEERING, VIRGINIA TECH

ASMR CONFERENCE

SPOKANE, WA

JUNE 8, 2016

Outline

Motivation

Review of Regulations

Overview of Treatment Methods

Passive Systems

Hybrid Systems

Conclusions

Motivation

More Stringent Discharge Limits Total Dissolved Solids (TDS), Specific Conductivity (SC)

Need for Cost-Effective and Reliable Technology Passive, Active, Hybrid

Gap of Knowledge in Terms of TDS Removal

Review of Regulations: Surface Mining Control and Reclamation Act (1977)

Created Office of Surface Mining

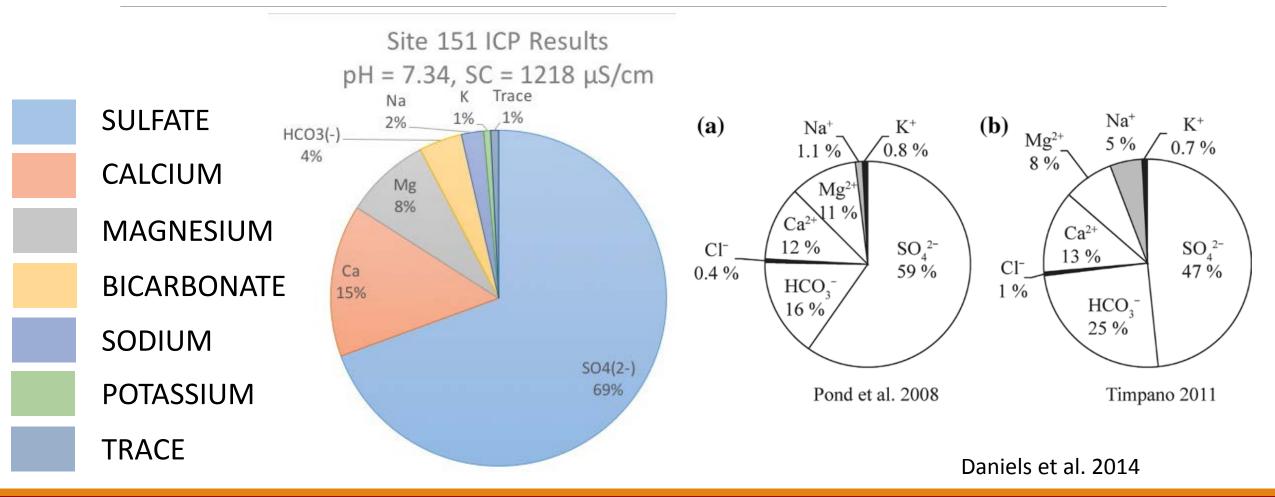
Regulates:

- Active Mines
- Abandoned Mines
- Key Recommendations:
- Restore to Original Topography
- Isolation of Acid-Forming Materials

Image Source: World Coal

Review of Regulations: Clean Water Act (1972)

Point Source Regulations


2009-2011

- Attempted to Set Specific Conductivity Standard of 500 μS/cm
 - Equivalent to 350 mg/L TDS
- Did Not Pass

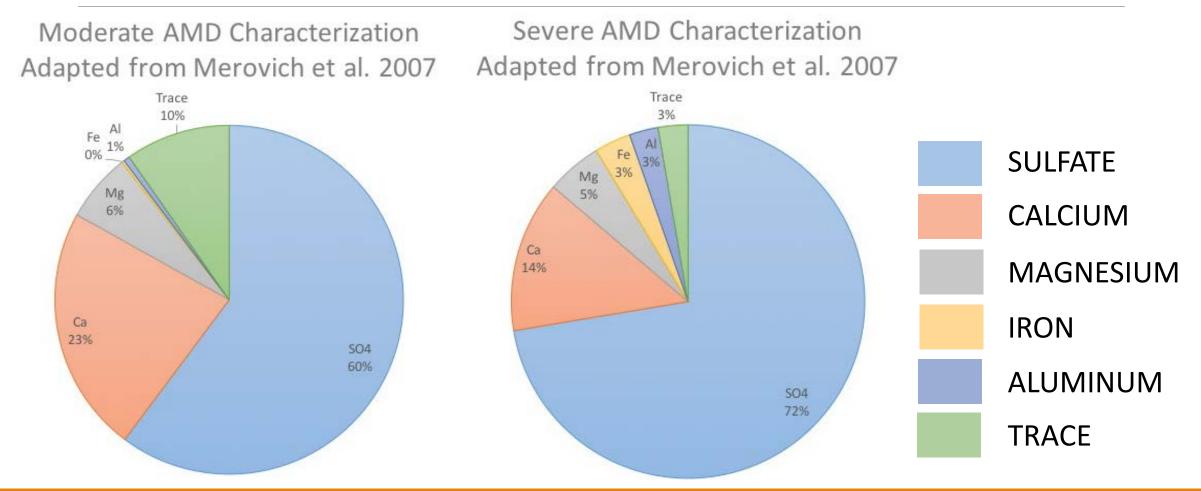
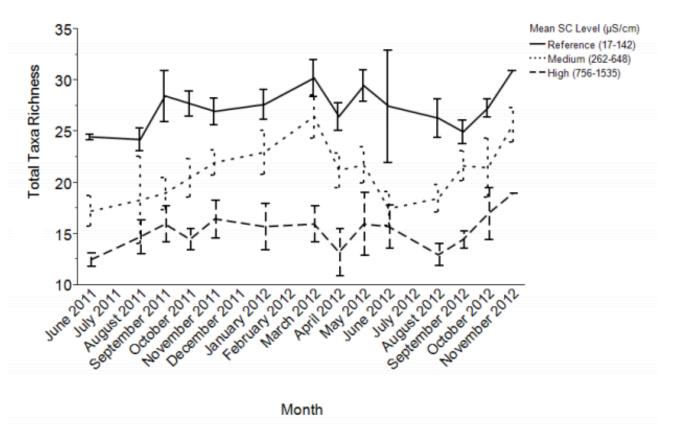


Image Source: Center for Environmental Rights

Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS) - AMD


Implications of High TDS on Streams

Stream Impacts

- Salinization
- Aesthetics

Ecological Impacts

- Potential Decrease in Benthic Macroinvertebrates
 - Ephemeroptera, Plecoptera, Trichoptera
 - Pond et al. 2008, Boehme 2013
- Variability

Boehme 2013

Overview of Treatment Methods

Active Systems

- Chemical Addition (Lime, etc.)
- Settling & Sludge Disposal

Passive Systems

Hybrid Systems

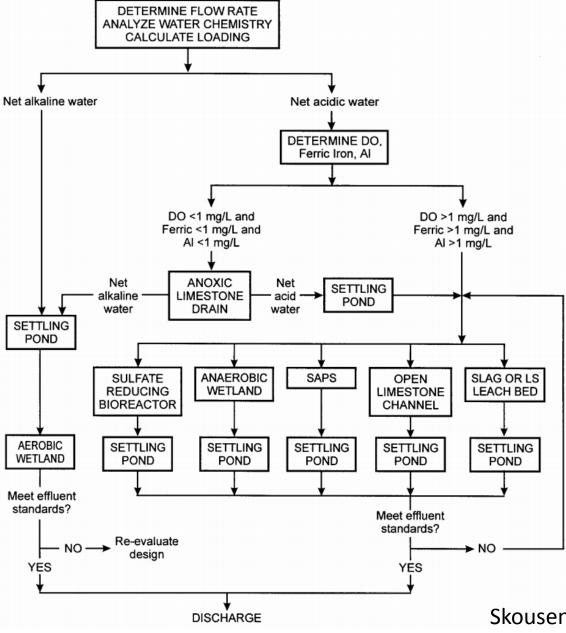
Combination of Active & Passive

Passive Systems

Examples of Passive Systems

Anoxic Limestone Drains (ALDs)

Open Limestone Channels (OLCs)


Permeable Reactive Barriers (PRB)

Successive Alkalinity Producing Systems (SAPS)

Constructed Wetlands (Aerobic & Anaerobic)

Sulfate Reducing Bioreactors (SRBs)

Selection of Passive Systems

Skousen and Ziemkiewicz 2005

Anoxic Limestone Drains (ALDs)

- Best Suited For:
- Net acidic conditions
- Low DO, Fe³⁺, Al³⁺

Issues

- Clogging
- Does NOT Encourage TDS Removal

Best Used for Pretreatment of AMD

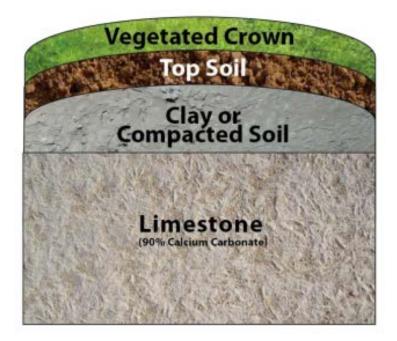


Image Source: EPA 2014

Case Study: Watzlaf et al. 2000

Reduced Acidity

- Raised Alkalinity
- Increased Ca Concentrations
 Increased pH
- Minimal Metal/Ion RemovalLittle to No Sulfate Removal

ALD Survey Data

Parameter	Percent Removal (%)
Acidity	63.6
Alkalinity	- 634
Iron	13.1
Manganese	3.0
Calcium	- 45.4
Sulfate	6.7

Table Adapted from Watzlaf et al. 2000 (Tables 4 & 5)

Open Limestone Channels (OLCs)

Similar to ALDs

Best Suited For:

- Net acidic conditions
- Low DO, Fe³⁺, Al³⁺
- Steep Slopes

Issues

- Armoring
- Not a Feasible Standalone

Image Source: USDA

Case Study: Ziemkiewicz et al. 1994

- Reduced AcidityIncreased pH
- Alkalinity Trends ◦ Initially Decreases (Fe²⁺ → Fe³⁺)
- Varying Metal/Ion Removal
 Fe/Mn Most Significant (>20%)
 Sulfate Removal Varied

DOLA OLC Water Quality

Parameter	Percent Removal (%)
Acidity	100
Alkalinity	- 56
Iron	80
Manganese	61
Aluminum	100
Calcium	- 7
Magnesium	2
Sulfate	28

Table Adapted from Ziemkiewicz et al. 1994 (Table 3)

Permeable Reactive Barriers

Benner et al. 1999 **Various Barriers** SULFATE: Sulfate (mg/L) **Best Suited For:** 1500-2499 500-1499 < 500 Metal/Anion Removal **IRON**: Iron (mg/L) Limitations: 150-249 50-149 <50 Optimization Required **ALKALINITY:** Clogging Alkalinity (mg/L as CaCO₃) Long-term Performance 749-1249 250-749 <250 Unknown

DIRECTION OF FLOW \rightarrow

Successive Alkalinity Producing Systems or Vertical Flow Systems

Best Suited For:

Net acidic conditions

• Fe²⁺, Al³⁺, Cu Removal

Issues

• Clogging

Replenishment of Organic Layer

Potential for Heavy Maintenance

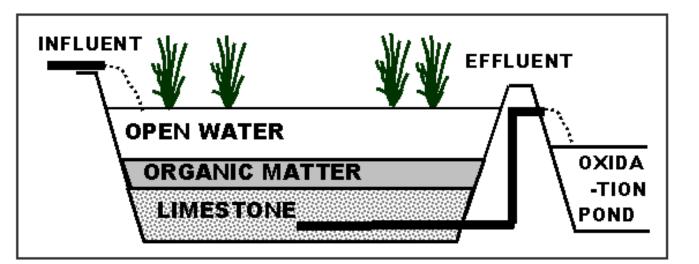


Image Source: VT Powell River Project

Case Study: Kepler and McCleary 1994

	Howe Brid	ge SAPS	<u>Schnepp Ro</u>	bad SAPS
Parameter	Influent	Effluent	Influent	Effluent
рН	4.7	6.2	6.0	6.6
Acidity (mg/L of $CaCO_3$)	321.0	92.6	83.5	5.2
Calcium (mg/L)	182.4	230.2	196.2	221.2
Magnesium (mg/L)	94.8	99.8	N/A	N/A
Sulfate (mg/L)	1,189.0	1,033.0	750.0	717.0
Ferrous Iron (mg/L)	193.0	102.0	1.6	1.0
Ferric Iron (mg/L)	1.6	0.0	19.0	0.1

Table Adapted and Reformatted from Kepler and McCleary 1994 (Tables 3/8)

Constructed Wetlands - Aerobic

Operating Conditions

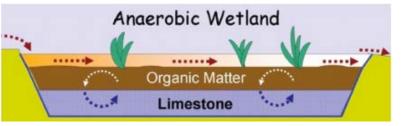
• Aerobic

Best Suited For:

- Fe/Mn Removal
- Mildly Acidic or Net Alkaline Waters
- Limitations
- May Acidify Effluent
- Large Area Required
- Plant Uptake Limited
- Turnover Potential

Image Source: Zipper et al. 2011

Case Study: Hedin et al. 1994


Percent Change (%) of Various Ions at Eight Different Aerobic Wetlands

Site	Са	Mg	Na	SO ₄
Donegal	-1	-2	0	0
Emlenton	+1	-1	-2	-1
FH	+55	0	+2	-25
Gourley	+3	+3	+6	+3
Latrobe	+14	-2	+8	-20
Piney A	+2	+4	+4	-3
Piney B	0	0	-2	+2
Somerset	+53	0	+15	-16

Table Adapted and Reformatted from Hedin et al. 1994 (Table 10)

Constructed Wetlands - Anaerobic

- Operating Conditions
 - Anaerobic
- Best Suited For:
- Metal Capture & Removal
- Acidic, Neutral, or Alkaline Waters
- Limitations:
- Large Land Requirement
- Long HRT
- Odor

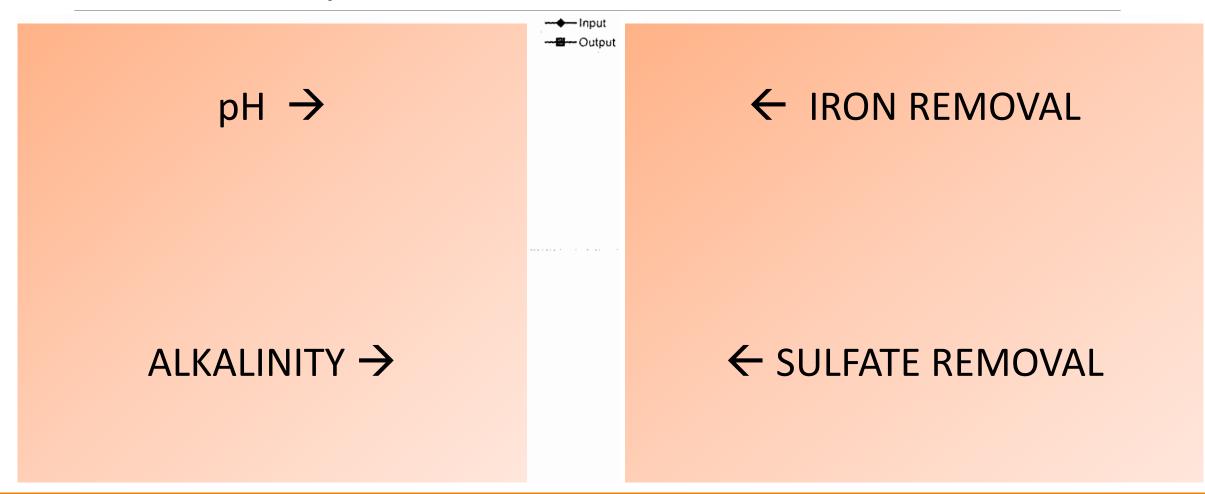


Image Source: Zipper et al. 2011

Image Source: Skousen and Ziemkiewicz 2005

Case Study: Rees and Bowell 1999

Sulfate Reducing Bioreactors

Similar to SAPS

Operating Conditions

- Anaerobic
- Mixture of Organic Substrate & Limestone
- **Best Suited For:**
 - Sulfate Removal
- Metal Capture & Removal
- Acidic Waters

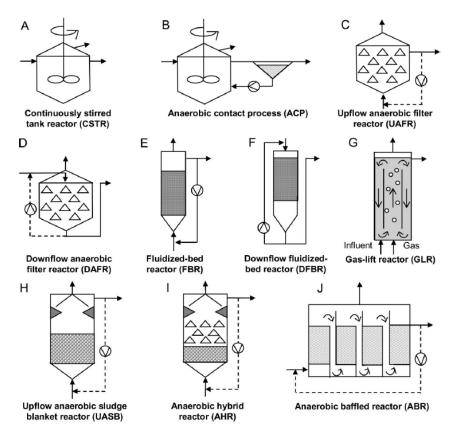


Image Source: Kaksonen and Puhakka 2007

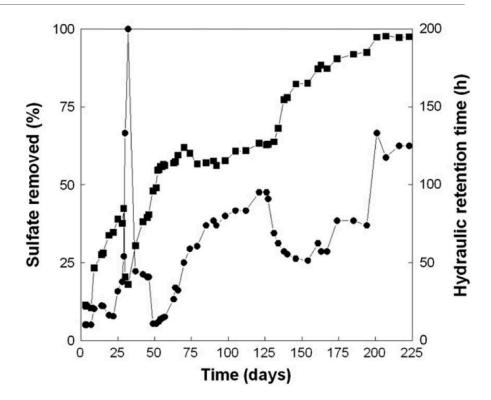
Sulfate Reducing Bioreactors

Advantages

- Able to Handle Varying pH
- Can use Waste Organics
- Resilient
- Able to remove Trace Metals
- Generates Alkalinity
- Low Maintenance

Disadvantages

- Odor
- May Require External Carbon Source (e.g. Ethanol)
- Long Startup Time
- Bed Compaction
- Potential Sludge Production
- Potential Release of Soluble Organics


Case Studies: Hiibel et al. 2008 & Ňancucheo and Johnson 2014

Hiibel et al. 2008

- Increase in pH
- Removals at Two Sites
 - Sulfate: 37/64 %
 - Iron: 18/86 %
 - Aluminum: 46/100 %

Ňancucheo and Johnson 2014

 Significant SO₄²⁻ removal could be achieved in very acidic waters

Fig. 1. Relationship between the percentage of sulfate removed (\blacksquare) from synthetic NGW and hydraulic retention time (\bullet).

Hybrid Systems

Case Study: Semi-Passive BSR System

Configuration

- Settling Pond
- Carbon Addition
- Biological Sulfate Reduction Reactors
- Polishing Pond

Limitations

- Drop in Performance in Winter
- Solids Removal

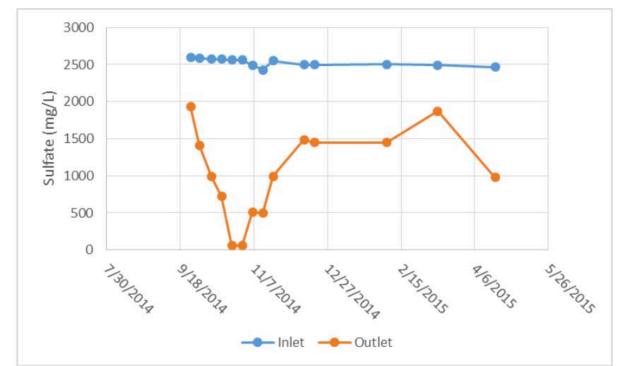
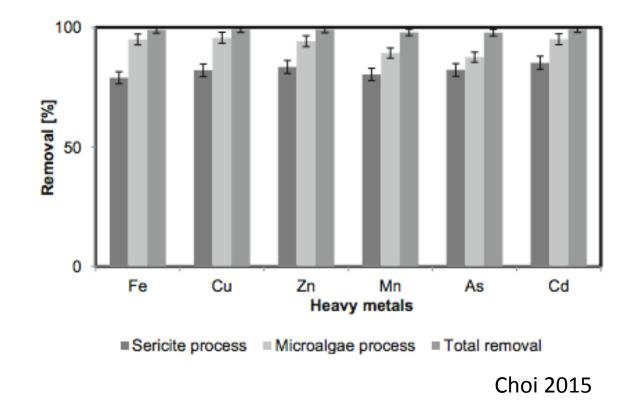


Figure 6. Sulfate Influent and Effluent of SRB Pilot Plant

Walker et al. 2015


Case Study: Sericite & Microalgae System

Configuration:

- Sericite Bead Compartment
- Microalgae Photobioreactor
- Sericite Beads
 - Neutralization
 - Metal Removal
- Microalgae Photobioreactor
 - Metal Removal

Limitations

• Light Source

Conclusions

Gap in Knowledge

Sulfate Typically Largest Constituent

Passive Systems Needed

Combination

In Conjunction with Active Technologies

Acknowledgements

VirginiaTech Invent the Future

Questions?

AMD Ionic Makeup

	Reference (98)	Soft (32)	Hard (42)	Moderate AMD (32)	Transitional (134)	Severe AMD (37)
pН	6.9 (0.5)	5.0 (0.8)	7.1 (0.5)	6.0 (1.0)	6.8 (0.7)	3.5 (0.7)
Cond	94 (80)	74 (96)	591 (543)	171 (103)	125 (130)	703 (455)
Alk	21.3 (18.8)	2.3 (2.9)	82.4 (102.7)	25.4 (55.9)	22.9 (21.3)	0.5 (1.6)
Al	0.01 (0.01)	0.21 (0.14)	0.04 (0.05)	0.43 (0.97)	0.06 (0.08)	9.72 (9.37)
Ba	0.03 (0.01)	0.03 (0.01)	0.04 (0.01)	0.04 (0.03)	0.04 (0.01)	0.03 (0.01)
Ca	9.8 (9.4)	1.9 (1.3)	58.3 (33.9)	16.9 (12.1)	11.0 (7.6)	51.0 (45.3)
Cd∗	3.0 (0.3)	3.0 (0.0)	3.2 (8.9)	4.0 (2.2)	3.9 (1.8)	3.5 (1.5)
Cl	1.7 (1.5)	1.5 (2.2)	48.5 (252.3)	3.8 (4.4)	6.4 (7.6)	3.9 (3.1)
Coª	1.5 (1.1)	1.9 (1.3)	2.6 (2.2)	19.7 (95.9)	1.6 (3.5)	57.4 (47.8)
Cr*	2.2 (1.4)	1.9 (1.1)	2.3 (1.3)	2.2 (1.1)	2.2 (1.2)	4.9 (3.0)
Cuª	1.6 (1.5)	2.0(3.1)	2.2 (3.2)	2.0 (3.1)	1.7(2.4)	15.9 (13.4)
Fe	0.03 (0.03)	0.09 (0.1)	0.13 (0.33)	0.17 (0.13)	0.14 (0.11)	12.23 (19.91)
Mg	1.7 (1.6)	0.6 (0.4)	15.7 (11.0)	4.7 (3.6)	2.2 (1.2)	18.7 (21.6)
Mn	0.01 (0.01)	0.07 (0.05)	0.35 (0.31)	0.38 (0.37)	0.10 (0.16)	1.85 (2.50)
Na	1.6 (1.7)	0.7 (1.4)	43.6 (124.4)	2.9 (3.4)	4.8 (5.5)	3.9 (2.9)
Nia	2.4 (1.9)	3.1 (1.6)	5.3 (4.8)	18.5 (13.2)	2.4 (1.4)	87.9 (62.9)
Znª	2.9 (3.4)	17.5 (50.2)	5.2 (5.6)	23.3 (27.3)	2.3 (2.0)	173.6 (121.8)
SO₄	9.6 (11.4)	7.7 (3.4)	198.9 (201.2)	44.5 (47.2)	14.6 (8.0)	266.2 (210.1)
PCI	-0.87A (0.30)	-0.66A (0.45)	0.40B (0.29)	-0.18C (0.43)	0.94D (0.34)	2.25E (0.60)
PC 2	-0.00A (0.56)	-1.68B (0.51)	1.56C (0.78)	0.25A (0.64)	-0.37D (0.71)	-0.90E(0.39)

" Units = $\mu g/L$.

Merovich et al. 2007

Case Study: Watzlaf et al. 2000

ALD		Net Acidity, ¹ mg/L as CaCO ₃		Alkalinity, mg/L as CaCO ₃		Calcium, mg/L		pH, s.u.		fate g/L
	In	Out	In	Out	In	Out	In	Out	In	Out
Howe Bridge 1	472	352	32.6	155	115	223	5.74	6.30	1319	1314
Howe Bridge 2	411	274	35.3	163	157	209	5.40	6.48	1210	1211
Elklick	52.0	-63.0	33.8	159	258	232	6.06	6.73	334	327
Jennings	280	-33.5	0	139	ND	201	3.23	6.16	633	620
Morrison ²	387	51.4	28.7	278	82.9	208	5.19	6.35	1256	1016
Filson-R ²	100	-139	47.9	299	69.2	180	5.73	6.49	408	438
Filson-L ²	104	-175	47.9	317	77.1	129	5.73	6.60	408	395
Schnepp ³	307	-42.5	0	168	69.2	189	3.28	6.17	980	745
REM-R ³	1148	835	0	54	258	206	4.28	5.45	2825	2394
REM-L ³	ND	259	ND	113	ND	198	ND	6.00	ND	1250

Table 4.	Average water qual	ty before and aft	er contact with th	e anoxic limestone drain.
----------	--------------------	-------------------	--------------------	---------------------------

Table 5. Additional water quality parameters before and after contact with the anoxic limestone drain.

ALD	Iron, mg/L		Manganese, mg/L		Aluminum, mg/L		Cobalt, mg/L		Nickel, mg/L		Zinc, mg/L	
	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out
Howe Bridge 1	276	275	41.5	41.5	<0.2	<0.2	0.48	0.48	0.51	0.50	0.62	0.55
Howe Bridge 2	250	248	36.6	35.9	<0.2	<0.2	0.39	0.39	0.40	0.40	0.42	0.39
Elklick	59.2	53.3	4.77	4.89	<0.2	<0.2	0.07	0.07	0.10	0.09	0.13	0.08
Jennings	75.6	59.3	8.39	8.33	20.9	1.1	0.13	0.15	0.40	0.40	0.66	0.54
Morrison ¹	207	156	48.7	40.9	0.5	<0.2	0.86	0.75	0.79	0.65	0.95	0.72
Filson-R ¹	59.3	55.5	19.9	19.8	0.4	<0.2	0.23	0.23	0.18	0.18	0.27	0.18
Filson-L ¹	59.3	68.6	19.9	15.9	0.4	<0.2	0.23	0.13	0.18	0.10	0.27	0.17
Schnepp ²	92	61.5	28	26.3	6.7	<0.2	ND	0.27	ND	0.33	ND	0.34
REM-R ²	589	447	136	126	4.5	3.2	ND	1.49	ND	1.54	ND	246
REM-L ²	ND	185	ND	50.8	ND	<0.2	ND	0.60	ND	0.66	ND	0.76

¹ "In" concentrations based on water quality of a nearby seep.

² "In" concentrations based on historical water quality data of the untreated mine drainage prior to construction of the ALD. ND - Not Determined

¹ Negative net acidity values indicate net alkalinity.

² "In" concentrations based on water quality of a nearby seep.

³ "In" concentrations based on historical water quality data of the untreated mine drainage prior to construction of the ALD. Numbers are not available for REM-L. ND = Not Determined

Case Study: Ziemkiewicz et al. 1994

Site	Ft from Top	рH	Acid	Alk	Fe	Mn	AI	<u>Ca</u>	Ma	SO
Brownto	n									
	0	5.6	10	90	28	3	0	185	67	854
	100	6.0	0	63	27	3 3	0	187	66	854
	200	6.1	0	60	25	3	0	187	64	827
	400	6.2	0	53	24	3	0	187	64	827
	500	6.3	0	55	22	3 3	0	208	65	849
%	Change		-100	-39	-21	0	0	12	-3	-1
Dola										
	0	6.0	154	101	162	28	3	483	129	2263
	100	6.1	215	28	152	34	2	475	137	2192
	400	6.5	0	81	35	24	0	552	135	2227
	700	6.6	0	231	32	11	0	519	126	1629
% 0	hange		-100	56	-80	-61	-100	7	-2	-28

***Double Check Units

Case Study: Kepler and McCleary 1994

Table 3. Influent-effluent water quality, Howe Bridge SAPS, January 23, 1992 through July 27, 1993, effluent corrected for dilution-concentration.

		(Influent)	(Effluent)					
Parameter ¹	n	Mean		Range	n	Mean	Range			
pH, s.u	6	NA	3.29	9 - 6.14	6	NA	5.84 - 6.49			
Acidity	6	321.0	207	- 396	62	92.6	0 - 278.8			
Calcium	6	182.4	136.0	- 230.8	6	230.2	192.2 - 279.4			
Magnesium	6	94.8	67.1	- 114.6	6	99.8	77.8 - 123.6			
Sulfate	6	1,189	875	-1,407	6	1,033	621 -1,258			
Fe ²⁺	6	193.0	149	- 231	6	102.0	47.7 - 159.0			
Fe ³⁺	6	1.6	0	- 9.6	6	0	0			

NA Not applicable.

¹ Acidity is presented as mg/L of CaCO₃ equivalent; all other values are in mg/L.

 2 n = 3 < 10 mg/L readings, calculated as zeroes.

Table 8. Influent-effluent water quality, Schnepp Road SAPS, July 15, 1992 through July 13, 1993, effluent corrected for dilution-concentration.

n · 1			(Influent)							
Parameter ¹	n	Mean	Rai	nge	n	Mean	Range			
pH, s.u	4	NA	5.86 -	6.20	4	NA	6.29	-	6.88	
Acidity	4	83.5	69 -	102	4	5.2	0	-	18	
Calcium	4	196.2	184 -	212	4	221.2	207	-	237	
Sulfate	4	750	654 -	846	4	717	622	_	810	
Fe ²⁺	4	1.6	0.4 -	3.6	4	1.0	0.6	-	1.2	
Fe ³⁺	4	19.0	16.5 -	21.2	4	0.1	0	-	0.2	

NA Not applicable.

¹ Acidity is presented as mg/L of CaCO₃ equivalent; all other values are in mg/L.

Case Study: Hedin et al. 1994

		Ca			Mg			Na			SO₄		
	In, mg•L ⁻¹	Eff, mg•L ⁻¹	Change, %										
Donegal	244	241	-1	81	79	-2	6	6	0	729	729	0	
Emlenton	429	433	+1	308	306	-1	11	10	-2	2,810	2,770	-1	
FH	122	189	+55	51	51	0	5	7	+2	1,125	842	-25	
Gourley	117	120	+3	114	117	+3	3	4	+6	1,000	1,030	+3	
Latrobe	244	256	+14	127	125	-2	6	11	+8	1,525	1,225	-20	
Piney A	416	426	+2	251	262	+4	15	16	+4	2,190	2,120	-3	
Piney B	355	354	0	217	216	0	27	27	-2	2,050	2,100	+2	
Somerset	307	469	+53	312	312	0	6	7	+15	2,740	2,300	-16	

Table 10.-Influent and effluent concentrations of Ca, Mg, Na, and sulfate at eight constructed wetlands

Eff Effluent.

In Influent.

FH Friendship Hill National Historical Site.

Case Study: Hiibel 2008

Table 4. Water chemistry and removal data for the Luttrell and PJK field-scale bioreactors treating AMD.

Luttrell field site	Influent		Effluent			
	Weekª	Long term ^b	Weeka	Long term ^b		
Flow (I/D)	30 091	4168	30 091	4168		
pH	5.24	3.64	5.99	6.07		
Temp (C)	5.6	10.9	5.4	11.4		
			Percent removal		Average removal rate (mg/l/day)	
			Week ^a	Long term ^b	Weekª	Long term ^b
Sulfate (mg l-1)	988	3776	73	64	3.0 × 10 ⁻²	2.2×10°
Fe (mg H1)	n.a.	61.59	n.a.	86	n.a.	4.8×10 ⁻²
Al (mg ⊢¹)	n.a.	67.15	n.a.	100	n.a.	6.1 × 10 ⁻²
Zn (mg l ⁻¹)	n.a.	204.53	n.a.	99	n.a.	1.9 × 10 ⁻¹
Cu (mg ⊦¹)	n.a.	15.81	n.a.	100	n.a.	1.4×10 ⁻²
Cd (mg ⊦¹)	n.a.	1.39	n.a.	99	n.a.	1.3 × 10 ⁻³
Mn (mg l-1)	n.a.	195.40	n.a.	59	n.a.	1.1 × 10 ⁻¹
Ni (mg l-1)	n.a.	0.52	n.a.	0	n.a.	0.0 × 10°

	Influent		Effluent			
PJK field site	Weekª	Long term ^b	Weeka	Long term ^b		
Flow (L/d) pH Temp (C)	204 390 6.35 6.7	116 170 6.89 10.3	181 498 88 108 6.55 6.69 7.8 12.6 Percent removal		Average removal rate (mg/l/da	
			Weekª	Long term ^b	Weekª	Long term ^b
Sulfate (mg l ⁻¹)	98.0	87.1	28	37	7.7 × 10 ^{−3}	5.5 × 10 ⁻¹
Fe (mg F1)	0.10	0.23	11	18	3.2 × 10 ^{−6}	6.9 × 10 ⁻⁴
AI (mg F1)	0.02	0.07	11	46	6.4 × 10 ⁻⁷	5.4 × 10 ⁻⁴
Zn (mg H)	1.95	0.64	41	-11	2.3 × 10 ⁻⁴	-1.2 × 10 ⁻³
Cu (mg ⊦¹)	0.03	0.01	70	24	6.0 × 10 ⁻⁶	4.1 × 10⁻⁵
Cd (mg ŀ¹)	0.01	0.01	11	24	3.2 × 10 ⁻⁷	4.1 × 10⁻⁵
Mn (mg l-1)	4.19	1.51	41	2	5.0 × 10 ⁻⁴	5.3 × 10 ⁻⁴
Ni (mg l-1)	0.01	0.01	11	24	3.2 × 10 ⁻⁷	4.1 × 10⁻⁵

Average values the week prior to sampling.

b. Average lifetime values (2002-2005 for Luttrell, 2003-2005 for PJK).

n.a., data not available.

Case Study: Choi 2015

Table 3 Heavy metal removal using sericite beads and microalgae hybrid system in the AMD

	Heavy metals	Fe	Cu	Zn	Mn	As	Cd
Sericite beads process	Initial concentration (mg/L)	137.48±10.34	22.78±3.26	19.77±2.54	10.35±1.54	0.45±0.02	0.27±0.01
	End concentration (mg/L)	28.99 ± 3.64	4.09±0.45	3.27±0.32	2.04±0.15	0.08 ± 0.001	0.04 ± 0.001
	Removal (%)	78.91 ± 1.04	82.04±1.56	83.46±1.67	80.29±1.34	82.22±1.21	$85.19 {\pm} 0.98$
Microalgae process	Initial concentration (mg/L)	28.99±3.64	4.09±0.45	3.27±0.32	2.04±0.15	0.08±0.001	0.04±0.001
	End concentration (mg/L)	1.48 ± 0.03	0.18 ± 0.01	0.19 ± 0.01	0.22 ± 0.01	0.01 ± 0.00	0.007 ± 0.00
	Removal (%)	94.89 ± 1.02	95.60±1.05	94.19±1.54	89.22±1.24	87.50±1.12	95.00±1.32
Total removal (%)		98.92 ± 1.34	99.21±1.45	99.04±1.42	97.87±1.37	97.78±1.12	99.26±1.21