

Abiotic Aluminum and Sulfate Removal in Bench Scale Biochemical Reactors

By Jim Gusek, P.E., Sovereign Consulting Inc. Lakewood, Colorado

and

Paul Eger, P.E. Global Minerals Engineering LLC & Sovereign Consulting Inc. Minneapolis, Minnesota

Acid Rock Drainage – Confidential Site

SOVEREIGN CONSULTING INC.

ARD Seep Chemistry

Flow is (thankfully) only 1 gpm [3.8 L/min]

Parameter	Raw MIW
рН	2.5
ORP (mv)	523
Conductivity ms	7.1
Sulfate (Lab 1) mg/L	9,480
Alkalinity mg/L	0
Aluminum mg/L	932
Calcium mg/L	310
Cadmium mg/L	0.47
Cobalt mg/L	7.3
Chromium mg/L	0.19
Copper mg/L	4.2
Iron mg/L	348
Potassium mg/L	0.87
Magnesium mg/L	213
Manganese mg/L	125
Nickel mg/L	4.95
Sulfate mg/L	6,245
Silicon mg/L	78.8
Zinc mg/L	24.4

Bench Scale BCRs

 Bottom drainage layer

• Three mixtures

SOVEREIGN CONSULTING INC.

Test Mixtures & Flow

Material	Cell 1	Cell 2	Cell 3
Sawdust	0%	0%	10.0%
Wood Chips	64.5%	45%	49.5%
Limestone	25%	45%	30%
Wheat Straw	10%	9.5%	10%
Cow Manure	0.5%	0.5%	0.5%
Logic	Low Limestone	High Limestone	Baseline

Bench Flow rate: 1.2 liters/day; HRT about 94 days

Bench Scale BCRs

Multiple Sampling Ports

Anaerobic Biochemical Reactors (BCRs)

PLANTS ARE NOT REQUIRED FOR A BCR

Anaerobic Biochemical Reactors (BCRs)

AKA Vertical Flow Reactors or Sulfate Reducing

Bioreactors (SRBRs)

Aluminum and heavy metal removal, selenium removal, de-nitrification, pH adjustment, alkalinity & hardness addition

Biochemical Reactor Chemistry

Aluminum Behavior

 $Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12}$:26H₂O (Ettringite) + 12H⁺

Thomas, R.C. 2002. *Passive Treatment of Low pH, Ferric Iron-Dominated Acid Rock Drainage*. Doctoral Thesis. University of Georgia.

Other Aluminum Possibilities

- Hydrobasaluminite Al₄(SO₄)(OH)10•12-36(H₂O)
- Basaluminite Al₄(SO₄)(OH)10•5(H₂O)
- Aluminite Al₂(SO₄)(OH)₄•7(H₂O)
- Kaolinite Al₂Si₂O₅(OH)₄
- Silvialite (Ca,Na)₄Al₆Si₆O₂₄(SO₄,CO₃)

Ratio of aluminum to sulfate varies from 6 AI to 1 SO₄ (Silvialite) to 0.67 AI to 1 SO₄ (Ettringite)

Loading and Removal Calcs

	Raw	BCR	In	Out	Gain/	Limestone
Parameter	MIW	Effluent	Moles/day	Moles/day	(-Loss)	%
pН	2.5	6.5				
ORP	523	63				
Conductivity ms	7.1	6.07				
Sulfate (A) mg/L	9,480	2,770	0.12???	0.03	0.084??	
Alkalinity mg/L	0	1,060				
Aluminum mg/L	932	0.26	0.04	0.00001	0.042	
Calcium mg/L	310	690	0.01	0.02	-0.011	78%
Cadmium mg/L	0.47	0.0004	0.00001	0.00000	0.00001	
Cobalt mg/L	7.3	2.0	0.00015	0.00004	0.00011	
Chromium mg/L	0.19	0.0003	0.000004	0.000000	0.00000	
Copper mg/L	4.2	0.0080	0.0001	0.0000	0.00008	
Iron mg/L	348	1.3	0.01	0.00	0.0074	
Potassium mg/L	0.87	1075	0.00	0.03	-0.033	
Magnesium mg/L	213	312	0.01	0.02	-0.005	22%
Manganese mg/L	125	113	0.00	0.00	0.00025	
Nickel mg/L	4.95	0.60	0.00	0.00	0.00009	
Sulfate (B) mg/L	6,245	2,725	0.08	0.03	0.044	
Silicon mg/L	78.8	10.7	0.00	0.00	0.00290	
Zinc mg/L	24.4	0.25	0.00	0.00	0.00044	

Estimating Substrate Longevity

- Limestone
 - $-CaCO_3$ and
 - $-MgCO_3$
- Available organic matter (carbon)
 - Wood Chips
 - Sawdust
 - Straw
 - Manure

Sulfate reduction problem

- Sulfate reduction is used for estimating carbon longevity: 2 moles "available" carbon needed to reduce 1 mole of sulfate
- Aluminum precipitation in hydroxysulfate phase will sequester sulfate ABIOTICALLY
- Introduced bias suggests too much sulfate reduction and reduced carbon longevity – a correction factor is needed.

How much sulfate is removed Abiotically?

 Calcium is typically used for estimating limestone longevity

$$(Ca_{in} - Ca_{out} = Ca_{gain})$$

- Limestone Longevity (f) Cagain
- Aluminum precipitation in hydroxysulfate phase could sequester calcium
- Introduced bias suggests falsely extended limestone longevity

Could we be making Ettringite?

$6Ca^{2+} + 2AI^{3+} + 38H_2O + 3SO_4^{2-}$

=>

$Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12}:26H_{2}O + 12H^{+}$

SOVEREIGN CONSULTING INC

Loading and Removal Calcs

So let's assume that the Al concentration is about 878 mg/L and the flow is 1.2 L/day. Assume it's all removed.

That's 0.039 moles of Al/day.

Now, if we look at the calcium and say the effluent is 690 mg/L and the influent is 310 mg/L, that's a gain of 380 mg/L or about 0.0114 moles *Ca/day*.

Loading and Removal Calcs (cont.)

So carrying this further, the 0.039 moles of Al/day would need 0.117 (or 3 * 0.039)moles of calcium/day to <u>solely</u> create Ettringite.

The calcium would stay sequestered in the substrate... But now the apparent calcium consumption would be 0.117 + 0.0114 = 0.128 moles/day.

This is quite a bit more than the 0.0114 observed – about **11 times more**!

Partial Conclusion

We are not likely to be making mostly Ettringite purely on stoichiometry (we might be making some other mineral that involves calcium sequestration);

Basaluminite (which doesn't involve calcium) might be a better bet for most of the hydroxysulfate precipitates

Loading and Removal Calcs (cont.)

If we abiotically remove aluminum by forming aluminum hydroxy sulfate (Basaluminite), that means we'll be removing 1 mole of sulfate for every 4 moles of aluminum via this mechanism.

Call this the limestone-aluminum "correction" factor for sulfate removal/organic matter consumption rate.

Adjusted Organic Longevity

Material	Cell 1	Cell 2	Cell 3
Organic Total	75%	55%	70%
Kg OM avail	4.9	4.6	5.0
TOC losses	0.46 g/d	0.50 g/d	0.37 g/d
Aluminum- Adjusted OM Life	15 yrs?	13.8 yrs?	19.5 yrs?
Unadjusted OM Life	~7yrs?	~6 yrs?	~10 yrs?
Cell Design Logic	Low Limestone	High Limestone	Baseline

Loading and Removal Calcs (cont.)

For limestone longevity, we've typically assumed that for every mole of calcium liberated (in the effluent), that was a mole of calcium carbonate consumed in the limestone.

It might be better to use magnesium gain (more conservative) to estimate limestone dissolution

Limestone Longevity

Material	Cell 1	Cell 2	Cell 3
Limestone	25%	45%	30%
Kg Calcite	8.3	19.3	11.0
Kg Dolomite	2.3	5.4	3.1
Calcite (Ca) Based	42 yrs	85 yrs	49 yrs
Dolomite (Mg) Based	22 yrs	56 yrs	38 yrs
Cell Design Logic	Low Limestone	High Limestone	Baseline

CONCLUSIONS

- Aluminum precipitation in a hydroxysulfate phase will sequester sulfate abiotically, but the minerals that form are unknown
- This reaction can sequester calcium
- Developing an aluminum correction factor for OM longevity is tricky
- Using magnesium is better than using calcium for estimating limestone dissolution rates in high aluminum situations

Thank You

IF YOU'RE NOT PART OF THE SOLUTION, YOU'RE

PART OF THE **PRECIPITATE**

