

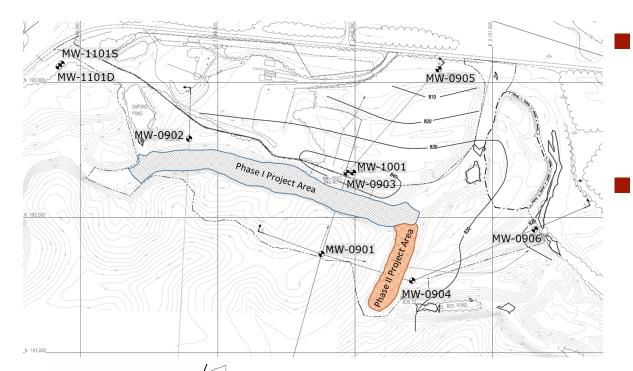
Impact of Coal Mine Reclamation Using Flue Gas Desulfurization (FGD) Materials on Groundwater Quality: Conesville and Cardinal Sites

Chin-Min Cheng¹, Robert Baker¹, Tarunjit Butalia¹, Harold Walker², John Massey-Norton³, William Wolfe¹

¹The Ohio State University, ²American Electric Power

COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL, ENVIRONMENTAL, AND GEODETIC ENGINEERING

Using FGD Materials for Mine Land Reclamation


- Flue gas desulfurization (FGD) materials
 - FGD gypsum
 - Stablized FGD by-product (Sulfite FGD by-product stabilized with fly ash and lime)
- Benefits of Using FGD materials for ML highwall reclamation
 - Re-contour highwalls in surface mines to eliminate dangers to the public's safety
 - Neutralize or encapsulate AMD producing materials
 - Alternative to landfilling
 - More economical than using natural materials

Projects Carried out by OSU on Coal Mine Reclamation

<u>Overall Objective</u>: Demonstrate the potential of high-volume utilization of FGD materials (stabilized sulfite FGD and FGD gypsum) for reclamation at abandoned and active Ohio coal mine sites

- Phase I Study (Reclamation potential, FGD gypsum properties) completed (final report online)
- Phase II Study (Conesville demo, Cardinal demo, grout pilot project) – in progress
- □ Phase III Study (Gavin AMD demo) in progress
- □ Impacts of Reclamation and Remining on Watersheds in progress
- Assessment of Stream Resources at Coal Remining Sites- in progress

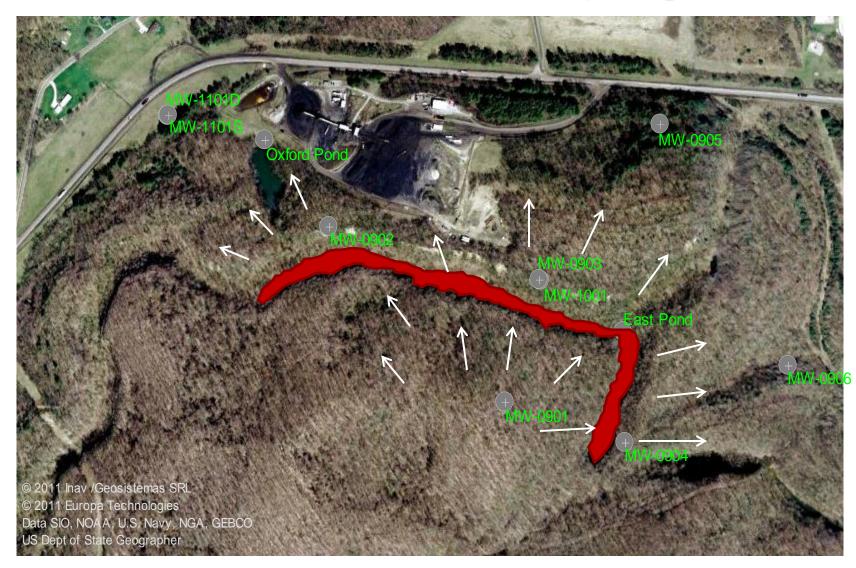
Conesville Five Points Reclamation Site

Reclamation of abandoned highwall (1,200 feet long, 60 to 100 feet in height)

Large-volume use of Conesville FGD gypsum (about 1.5 million tons) in combination with Conesville fixated FGD by-product and fly ash

Cardinal Star Ridge Reclamation Site

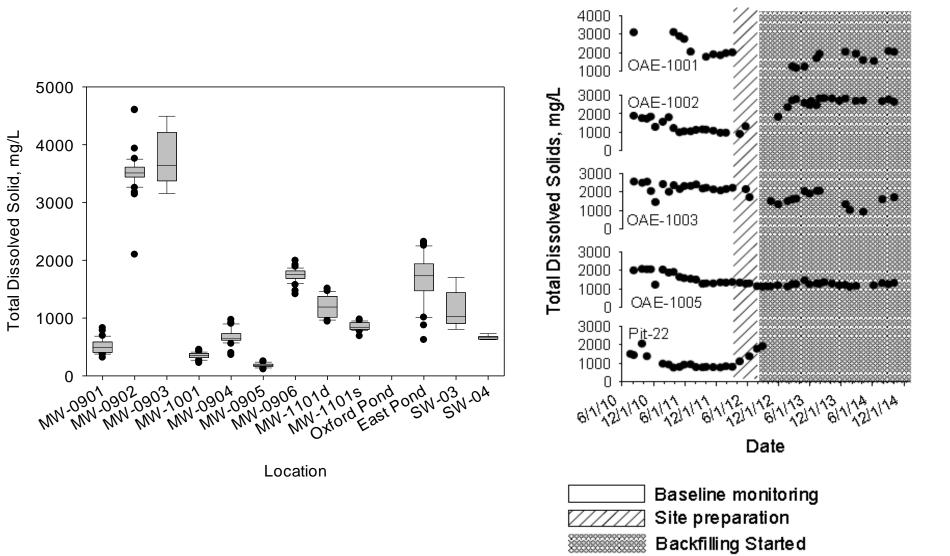
- Star Ridge site near Cardinal landfill (selected in consultation with industrial sponsors and Ohio DNR)
- Reclamation at permitted surface coal mine site of a highwall pit (250 feet long, 10 to 60 feet in height)
- Medium-volume use of Cardinal FGD gypsum (about 0.45 million tons) in combination with onsite spoil



Water Quality Monitoring

- The primary objective is to evaluate the impact of reclamation on the water quality of the uppermost aquifers underlying the sites
- Approaches
 - Collecting monthly groundwater samples from monitoring wells installed around the reclamation sites using a low-flow purging and sampling procedure
 - Monitoring the water quality of surface water bodies within or adjacent to the project sites
 - Assessing the leaching properties of the backfilling FGD materials

Conesville Five Points Sampling Sites



Cardinal Star Ridge Sampling Sites

Spatial and Temporal Variations

Cardinal Star Ridge Site

Sampling

Pre-reclamation

- □ Conesville: 11/2009 to 7/2011 (18 months)
- Cardinal: 7/2010 to 3/2012 (21 months)
- Establishing background water quality data

Site preparation

- Conesville: 8/2011 to 12/2011 (5 months)
- □ Cardinal: 4/2012-8/2012 (5 months)

Reclamation

- □ Conesville: 1/2012 to present
- □ Cardinal: 9/2012-present
- The water monitoring at both sites continues throughout the reclamation stage, as well as after the reclamation is completed

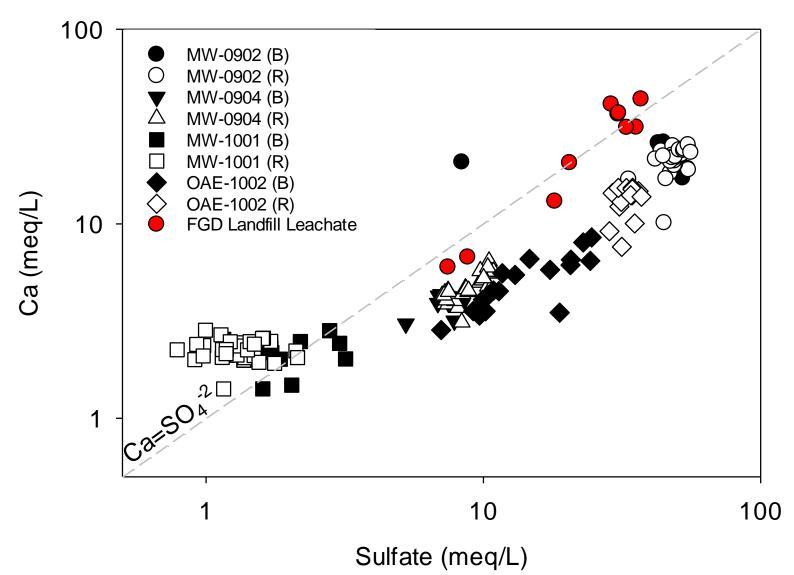
Background Water Quality

- More than 18-month worth of monitoring data for establishing background water quality
 - Provides sufficient sample size to estimate variations of background water quality
 - Establishes upper prediction limit (UPL), a "not-toexceed" threshold value, for each of the 34 monitoring parameters, used for evaluating if significant changes occur during and after reclamation.
 - Concentration levels of As, Be, Cd, Co, Cr, Tl, Zn, and
 V were frequently below the limits of detection.
 - Concentration levels of AI, Cu, Se, and Pb were always below the limits of detection in all water samples.

Constituents Exceeding UPLs

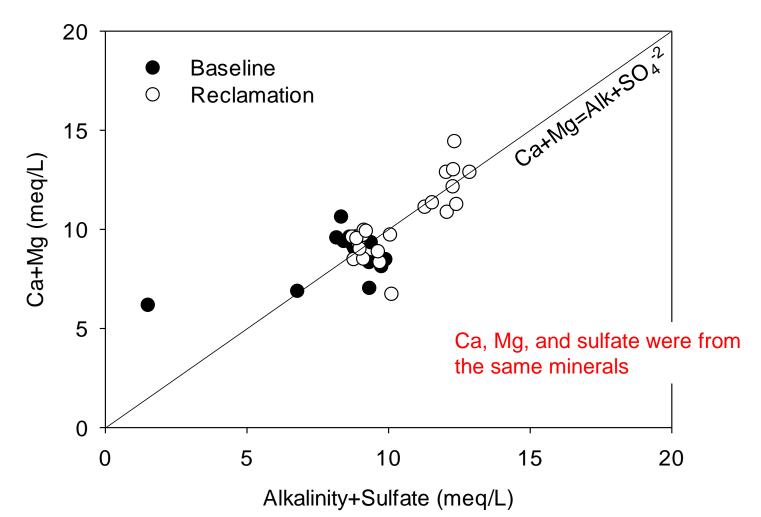
Conesville Five Points site

- □ MW-0901: Si
- □ MW-0902: P, B, Si, and TI, Na, and CI
- □ MW-1001: Alkalinity, Ba, and Si,
- □ MW-0904: Conductivity, TDS, sulfate, Ca, Mg,
 - B, Fe, Mn, Na, Ba, Cd, Sb, Si, and Sr,
- □ MW-0905: Si,
- MW-0906: Conductivity, sulfate, B, Ba, Co, Si, and TI
- □ Oxford Pond: Na, Ba, Si, and Cl

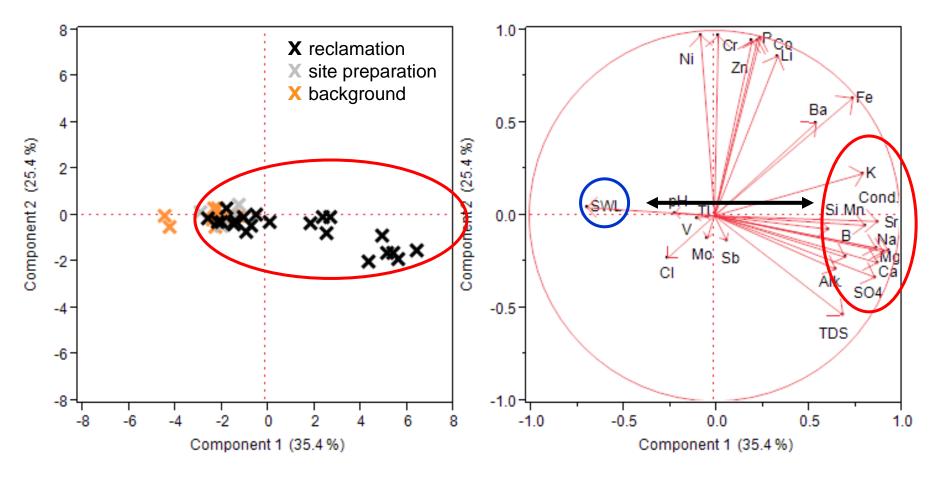

Constituents Exceeding UPLs

Cardinal Star Ridge site

OAE-1001: B.
 OAE-1002: TDS, sulfate, K, Ca, Mg, Mn, Ba, Cr, Si, Sr, and Tl.
 OAE-1003: pH, K, B, Mo, As, Li, and Sr.
 OAE-1005: K, Na, and Li


Seepage of leachate from FGD materials?

 $CaSO_4 \cdot 2H_2O \leftrightarrow Ca^{2+} + SO_4^{-2} + 2H_2O$

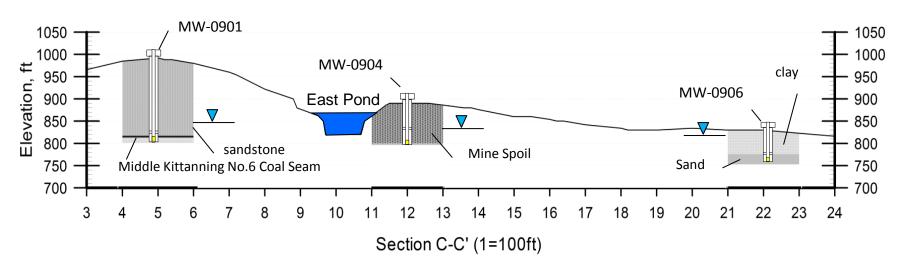

Seepage of leachate from FGD materials?

MW-0904

What has caused the changes?

MW-0904 at the Coneville site

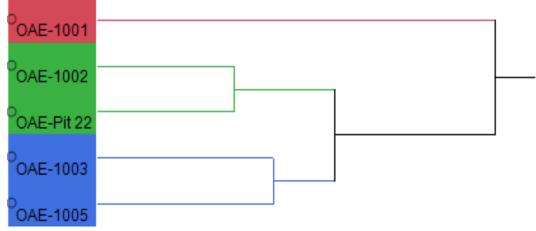
Change of hydrological Condition


Conesville Five Points Sampling Sites

Effect of East Pond Recharge

MW-0904

- Collects water from minespoil layer
- Has similar dominating cations and anions as waters from minespoil layers (MW-0902 and MW-0903) but with lower concentrations
- Recharge from East Pond
- Concentrations of TDS and major ions are higher in MW-0906 than in MW-0904, indicating dissolution process as groundwater moving downstream



Pit 22 and OAE-1002

Hierarchical cluster analysis

- Group water samples into classes on the basis of 16 parameters, i.e., pH, conductivity, alkalinity, TDS, CI-, SO₄⁻², K, Ca, Mg, B, Fe, Mn, Na, Ba, Si, Sr
- Water in OAE-1002 was similar to the surface water accumulated in Pit 22 before reclamation start

Summary

 High volume FGD materials have been placed since the reclamation started

□ Conesville: over 1,400,000 tons as of 5/2015

- □ Cardinal: over 450,000 tons
- Changes of water qualities at both sites were statistically significant after reclamation started.
 - Ca, sulfate, Mg, Ba, Co, Fe, Mn, Na, Ba, Cd, Sb, Si, and/or Sr, exceeded the upper prediction limits (UPLs) in one or more of the sampling locations
 - In addition, significant incline or decline trends in the concentrations of major monitoring parameters during the reported reclamation period had also been identified

Summary (continued)

- Current observed changes in water quality are unlikely due to seepage of FGD leachates (i.e., FGD gypsum and/or fixated FGD material).
- Change of hydrogeological condition might play more significant role.
- Reclamation progress
 - □ Conesville: ~90% of capacity
 - Cardinal: backfilling and capping have been completed. The site is ready for revegetation.

Future Work

- American Electric Power/OSU will continue to monitor/analyze the surface and groundwater quality around the reclamation sites
- Establish geochemical model to better describe the change of hydrochemical properties of groundwater
- Stable isotope analysis
 - Monitoring wells have been installed in the middle of fill to collect water samples from the bottom of the well and the aquifer underneath of the fill.

Acknowledgement

- Ohio Coal Development Office
- Ohio Department of Natural Resources
- Ohio American Energy

Coal Combustion Products Program

Ohio State's Coal Combustion Products Program focuses on sustainable, high-volume beneficial uses of coal combustion products (CCPs), primarily from sulfur dioxide scrubbing processes, in construction, reclamation, infrastructure rehabilitation, manufacturing and agricultural applications. This program advances the beneficial uses of CCPs from sulfur dioxide scrubbing processes as well as more traditional byproducts, including fly ash, bottom ash, boiler slag and fluidized-bed combustor ash. Re-use of CCPs provides a lowcost raw construction material; extends the life of landfills, and lessens the need for new ones; and helps keep energy production costs in check.

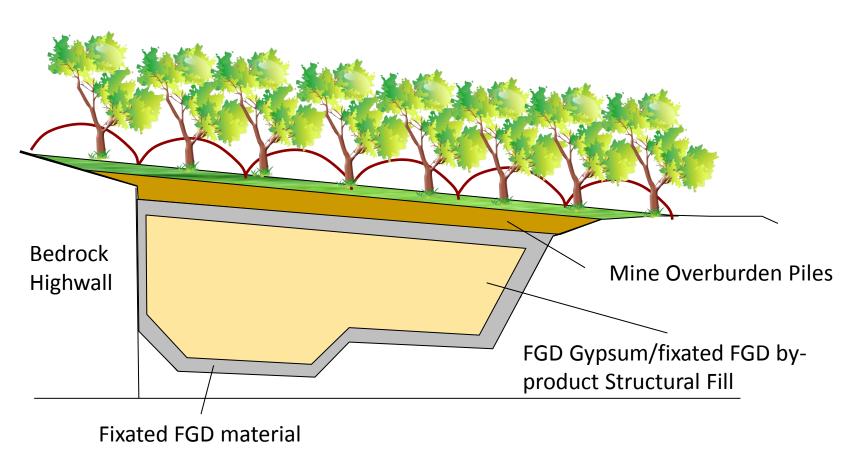
COAL COMBUSTION PRODUCTS PROGRAM

Funded by the Ohio Coal Development Office, Ohio State University, Ohio coal-fired utilities, ash marketers, private businesses and trade and farming organizations, the Coal Combustion Products Program Improves and discovers technically sound, environmentally friendly and commercially competitive uses of CCPs in many interdisciplinary sustainable applications.

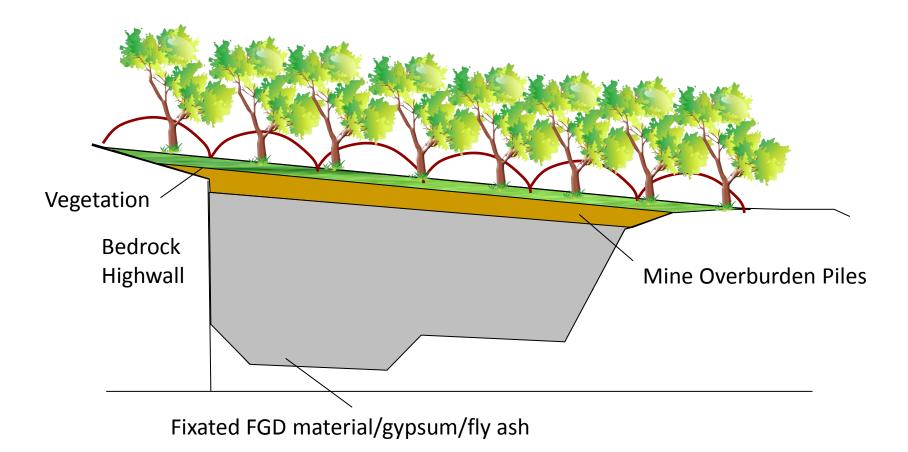
The program aids the CCP industry through research, education, technology transfer and outreach in its efforts to:

- expand uses in proven areas, such as highway and agricultural applications;
- remove or reduce regulatory and perceptual barriers to use;
- develop new or under-used large-volume market applications, such as mine land reclamation; and
- place greater emphasis on sulfate and sulfite flue gas desulfurization byproducts utilization.

More than 500 animal feeding pads in more than 12 Ohio counties are made from coal combustion products, including feeding pads at The Wilds in Muskingum County.


© 2014 The Ohio State University OEE130139-CCF

Coal Combustion Products Program 470 Hitchcock Hall 2070 Neil Ave. Columbus, OH 43210 Program Coordinator: Tarunjit Butalia Email: butalia.1@osu.edu Phone: 614-688-3408 To learn more, visit ccp.osu.edu.



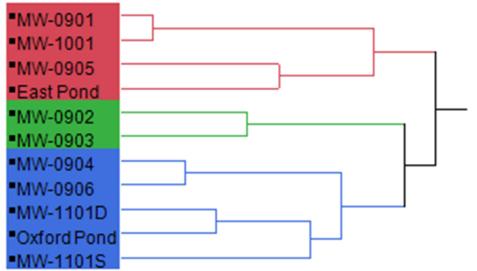
Mine Reclamation with FGD Materials

Phase I

Mine Reclamation with FGD Materials

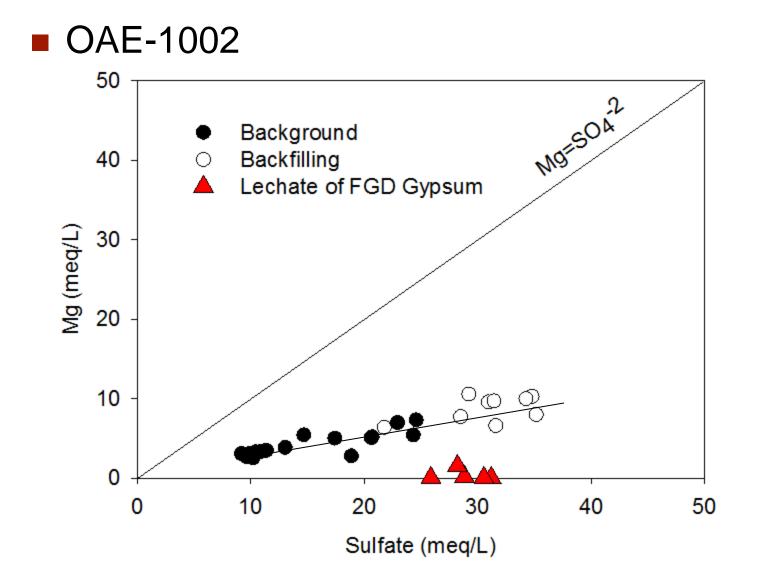
Phase II

Leachates of FGD Materials

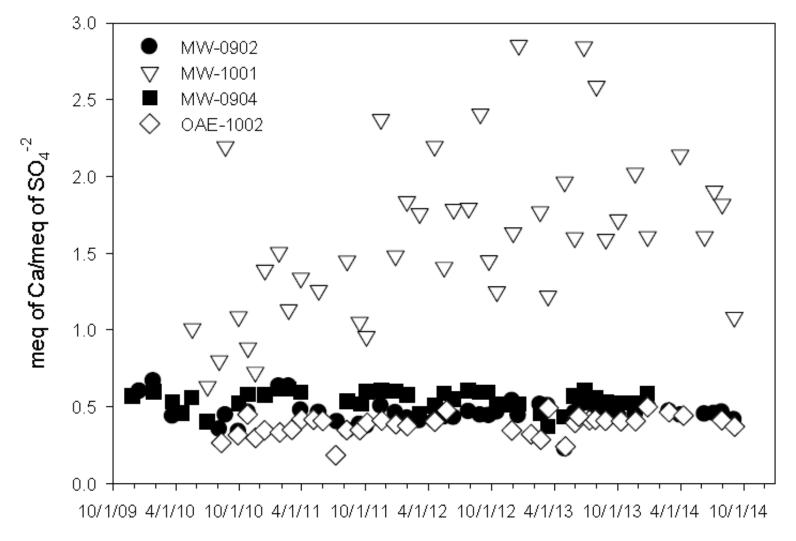

	Conesville Five Points Site		Cardinal Star Ridge Site	3745-82-02 Ohio	3745-81-11(B) Ohio		
	Fixated FGD	FGD Gypsum	FGD Gypsum	Secondary Maximum	Primary Maximum	, Maximum Acceptable	
Number of Samples	11	10	7	- Contaminant Levels/Drinking Water Standards (DWS), mg/L	Contaminant Levels/Drinking Water Standards (DWS), mg/L	Leachate Concentration, mg/L	
Alkalinity	260±180	31±11	21±3	No Standard			
Ars eni c	0.05±0.03	< 0, 009	0.032±0.019		0.01	α3	
Aluminum	1.3#1.8	0.07±0.05	<0.03	11.05-0.2			
Barium	0.21±0.12	0.12±0.05	0.14±0.06		2.0	60.0	
Beryllium	0.0004	< 0.0004	< 0, 004				
Boron	1.0±0.5	0.6±0.8	0.05 <u>±</u> 0.02	No Standard			
Cadmium	0.0005	0.0008±0.0005	0.00075±0.00012		0.005	0.150	
Chloride	27+21	14+10	4+4	250			
Chromium	0.0038±0.0013	0.0046±0.0010	0.0040±0.0016		0.1	3.0	
Copper	0.018	< 0,002	< 0, 002	1.3			
Fluoride	1.7±1.4	6±3	1.6±0.9	2			
Iron	0.006±0.006	< 0.001	0.00370±0.00004	0.3			
Lead	< 0, 004	0,005	< 0. 004		0.015*	0.450*	
Magnesium	1.1±2.4	2±2	0.39±0.05	No Standard			
<u>Man gan ese</u>	0.475	0.10±0.10	0.04±0.02	0.05			
Mercury	0.0003±0.0007	0.0009±0.0013	0.0001±0.0003		0.002	0.060	
Nickel	0,006±0,005	0,0028±0,0009	0.003±0.002				
рН	10.9±1.2	7.6±0.7	8.1 <u>±</u> 0.9	7.0-10.5			
Siluer	< 0.001	< 0.001	< 0.001	0.1			
Selenium	0.026	0.034±0.008	≺0.012		0.05**	1.00**	
Sodium	20±32	1.2±0.9	0.5±0.2	No Standard			
Sulfate	300±500	1520±30	1200±500	250			
TDS	1000±800	2260±60	2230±70	500			
Zinq	0.006±0.003	0.007±0.004	0.005±0.002	5	-		
* This is an action	This is an action level for lead, not a primary maximum contaminant level.						

For the purposes of CEPA policy 0400.007, this number will be referenced as a drinking water standard (DWS)

** For CCB Material leachate, the Maximum Acceptable Leachate Concentration for selenium cannot exceed 1 mg/L

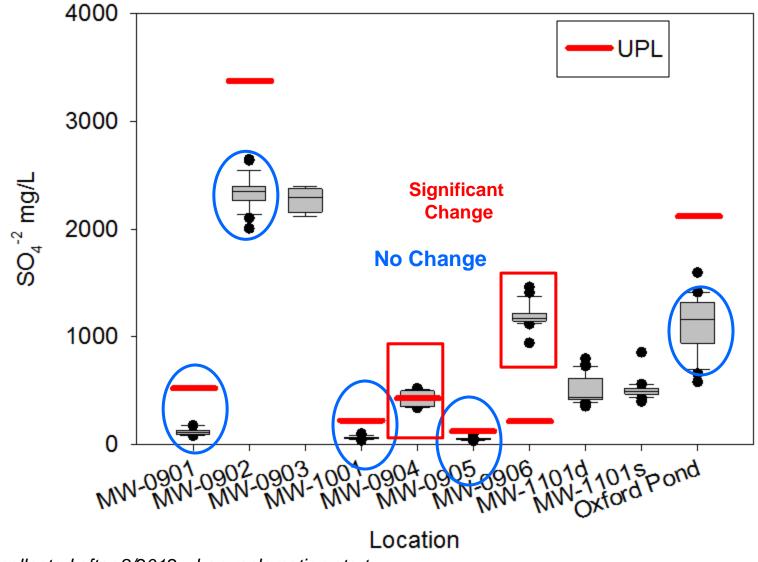

Background Water Quality

- Hierarchical cluster analysis
 - Group water samples into classes on the basis of 16 parameters, i.e., pH, conductivity, alkalinity, TDS, Cl⁻, SO₄⁻², K, Ca, Mg, B, Fe, Mn, Na, Ba, Si, Sr.



- MW-0901, MW-1001, and MW-0905: coal, clay shale and/or sandstone layers.
- MW-0902 and MW-0903: minespoil layers
- MW-0904, MW-0906, MW-1101D and MW-1101S: similar to MW-0902 and MW-0903 with diluted concentrations

Leakage of leachate from FGD materials?



Seepage of leachate from FGD materials?

Sampling date

Impact of Reclamation on Water Quality

Data collected after 8/2012 when reclamation start