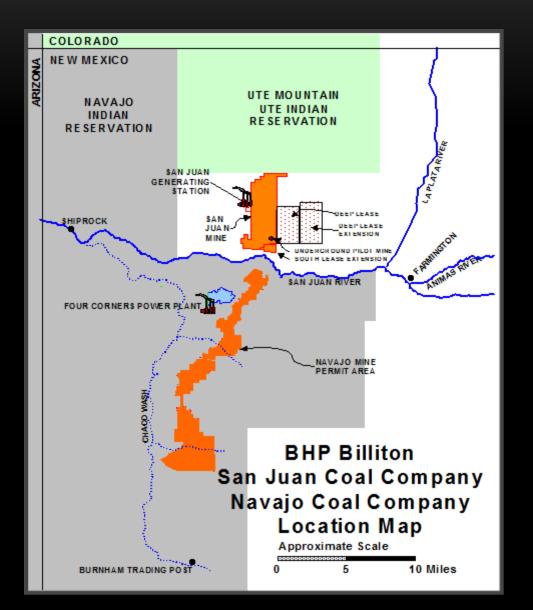


COAL COMBUSTION BY-PRODUCTS DISPOSAL PRACTICES AT A SURFACE COAL MINE IN NEW MEXICO: LEACHATE & GROUNDWATER STUDY

June 5, 2013

ASMR Presentation


Ryan Webb

Cheryl Parker, Kara Hart, Bruce Thomson, John Stormont, Mark Stone

BACKGROUND

- San Juan Power Generating Station/San Juan Mine (SJM)
- Coal is mined from the Fruitland Formation and disposed of at this location
- 2.7 million tons of CCBs disposed of in landfills each year
- 70% fly ash, 20% bottom ash, 10% FGD gypsum

BACKGROUND

GOALS

- What hazardous constituents are associated with CCBs and what is their potential for leaching from buried wastes?
- What are the geotechnical and hydraulic properties of the CCBs and how do they affect possible infiltration of ground water through the buried waste?
- What is the rate of infiltration through the disposed CCBs?
- Are there identifiable geochemical processes occurring that affect leachate quality or the hydraulic properties of the buried waste?

OBJECTIVES

- Results of leaching tests to characterize contaminant release from fresh and buried CCBs under saturated and unsaturated conditions
- Summary of the physical properties of soils and CCBs that govern the unsaturated flow of water through them
- Results of a one-dimensional unsaturated water flow model that estimates infiltration of water through disposed CCB materials.

METHODS

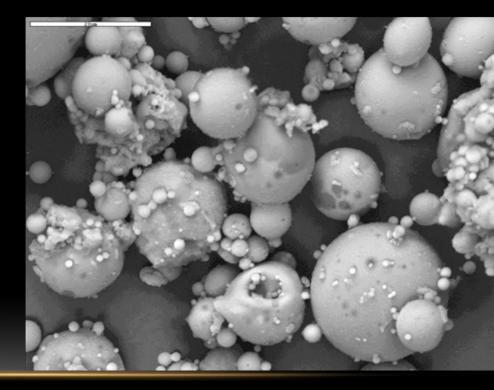
- Physical Properties of CCBs
- 1-D Model Development from Lab Results
- Leach Tests
- Geochemical Characterization
- Column Tests


METHODS (PHYSICAL PROPERTIES)

- Grain size distribution
- Specific Gravity
- Moisture Content
- Density
- Saturated Hydraulic Conductivity
- Moisture Characteristic Curves

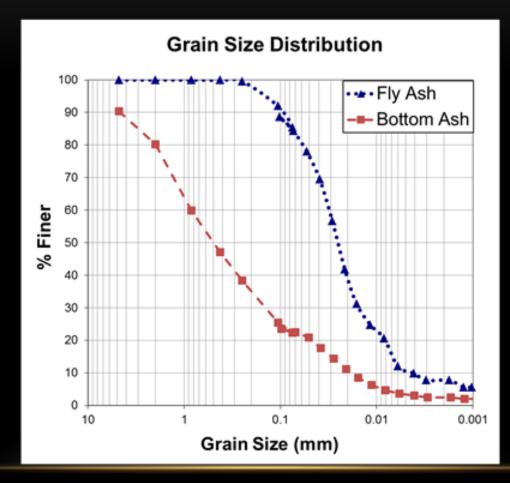
METHODS (MODELING)

- HYDRUS 1D
- 33 m of buried CCBs (FGD not included)
- 10 years of available daily climate data


METHODS (LEACH TESTS)

METHODS (GEOCHEMICAL CHARACTERIZATION)

- Scanning Electron Microscopy
- X-Ray Diffraction



METHODS (GEOCHEMICAL CHARACTERIZATION)

- Unsaturated flow columns (30 days)
- No. 8 coal seam water (2 columns) & DI water (6 columns)
- One pore volume per day

RESULTS (PHYSICAL CHARACTERISTICS)

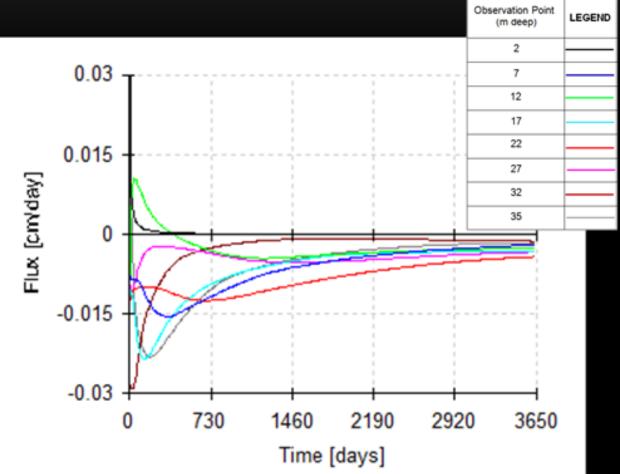
RESULTS (PHYSICAL CHARACTERISTICS)

Property	Fly Ash	Bottom Ash
% finer #200 sieve (0.075 mm)	85.4	22.3
% larger #200 sieve (0.075 mm)	14.6	77.7
Minimum Relative Density (kg/m ³)	1007.4	692.2
Maximum Relative Density (kg/m ³)	1184.4	813.8
Average Specific Gravity	2.00	2.06

RESULTS (PHYSICAL CHARACTERISTICS)

Material	Target Dry Density (kg/m ³)	Actual Dry Density (kg/m ³)	Sample 1 K _{SAT} (cm/s)	Sample 2 K _{SAT} (cm/s)	
Fly Ash	1028.4	1024.0	7.81E-05	1.30E-04	
Fly Ash	1113.3	1108.2	6.62E-05	8.10E-05	
Fly Ash	1169.3	1163.0	5.45E-05	5.96E-05	
Bottom Ash	727.2	724.4	3.53E-03	6.45E-03	
Bottom Ash	800.9	796.9	2.27E-03	6.26E-03	
Bottom Ash	913.1	910.4	1.48E-03	3.90E-03	
Top Soil		1680.0	8.45E-06		

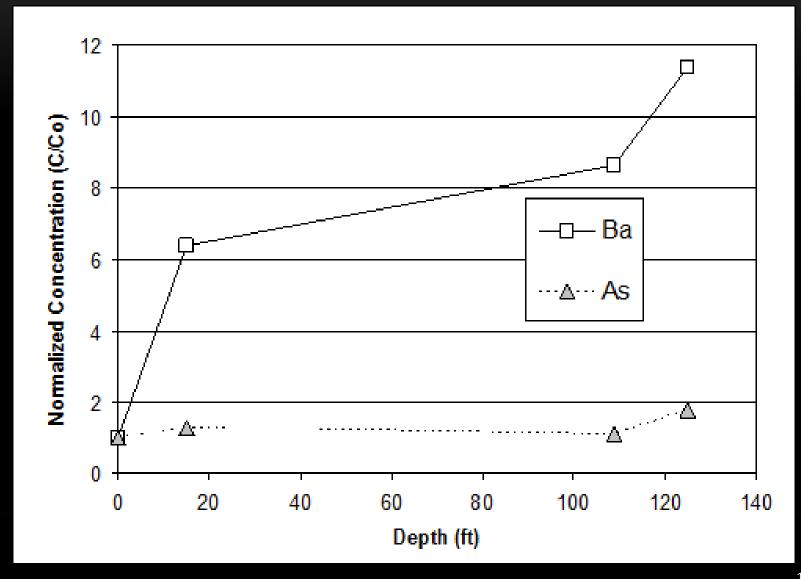
RESULTS (PHYSICAL CHARACTERISTICS)

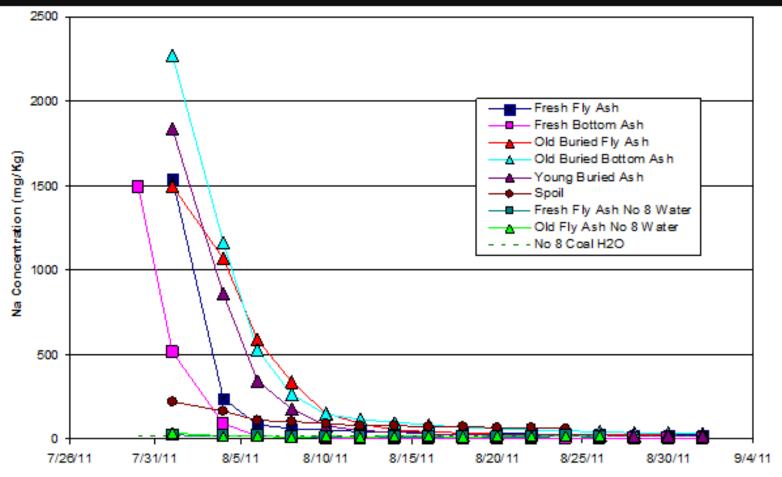

Material	Target Dry Density (kg/m ³)	θ _r (cm³/cm³)	θ _s (cm³/cm³)	α (1/cm)	n
Fly Ash	1028.4	0.003	0.55	3.9E-03	1.68
Fly Ash	1113.3	0.00	0.52	2.4E-03	1.66
Fly Ash	1169.3	0.00	0.47	1.1E-03	1.85
Bottom Ash	727.2	0.00	0.56	4.1E-02	1.46
Bottom Ash	800.9	0.00	0.66	4.3E-02	1.52
Bottom Ash	913.1	0.00	0.63	2.5E-02	1.54
Top Soil		0.202	0.44	3.23E-02	0.73
Pictured Cliffs		0.00	0.26	5.62E-03	0.21

RESULTS (1D MODEL)

• Water flux through the top soil predicted to be virtually zero

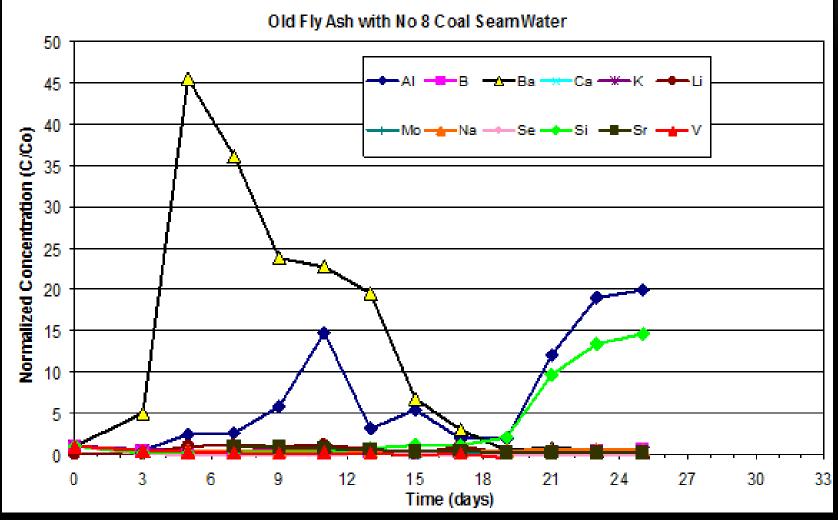
Profile	Range of Calculated Point Fluxes (cm/day)		Range of Observed Water Contents (cm/cm)	
FA only	-0.02 - 0.09	0.01 - 0.33	0.16 - 0.33	
BA only	0.0 - 0.12	0.01 - 0.27	0.19 - 0.27	
Baseline profile	-0.03 - 0.02	0.08 - 0.32	0.08 - 0.32	


RESULTS (1D MODEL)


RESULTS (LEACH TESTS)

- High concentrations of AI, Ba, Ca, Fe, Si, and Na
- High amounts of Ba may be due to water being added for CCB transport
- As concentration roughly twice as high in fly ash
- Samples deeper in landfill show increasing concentration of Ba and possibly B

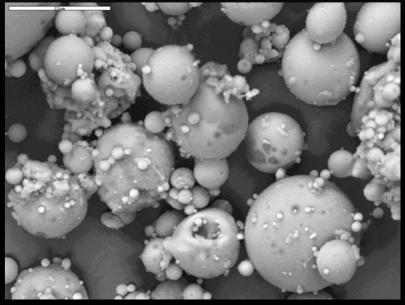
RESULTS



RESULTS (COLUMN TESTS)

Time

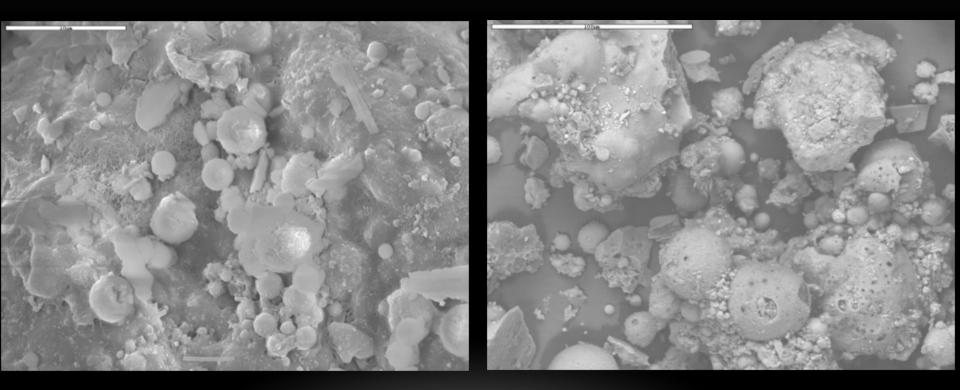
RESULTS (COLUMN TESTS)



DISCUSSION (COLUMN TESTS)

- Concentrations depend largely upon water characteristics
- Expected leaching is similar to No. 8 Coal Seam Water
- Column tests are HIGHLY accelerated (1 pore volume/day)
- Actual flow is expected to be much less

RESULTS (GEOCHEMICAL ANALYSIS)


• SEM – fly ash particles are small spheres of mostly Si, Al, and O

• Bottom ash "rougher" particles and higher amounts of carbon

RESULTS (GEOCHEMICAL ANALYSIS)

• Deepest cores show significant degradation

RESULTS (X-RAY DIFFRACTION)

- Fresh bottom ash suggests mullite and quartz are dominant
- Amorphous peak less distinctive as in fly ash samples
- Two peaks consistent with the presence of Calcite and Feldspar
- Patterns display aging from a glassy amorphous phase to a more clay/crystalline structure

DISCUSSION

- Column tests show highly accelerated rates and DI water is a much more aggressive leaching solution than ground water.
- B, Ca, Mo, and Sr will likely follow decreasing trend quickly
- Flow may be either unsaturated water or groundwater in aquifer, depending on future water table levels

DISCUSSION

		Column Tests							
	Ground	DI WATER					Ground Water		
Analyte	Water	FFA	FB A	OFA	OBA	YFA	Spoil	FFA	OFA
Al	0	1.503	0.273	0.315	1.55	5.667	0.031	2.064	3.273
В	0.33	2.146	67.64	29.6	33.51	33.26	7.406	40.26	11.34
Ba	0	6.42	0.067	0.058	0.053	0.052	0.154	0.057	4.32
Ca	45	436.6	665.2	605.7	454.2	591.2	317.5	403.4	472.7
Se	0	0.125	0.244	0.182	0.088	0.078	1.934	0.191	0.935
Si	1.4	0.768	6.334	8.093	4.316	2.256	8.766	1.97	27.12
V	0	0.026	0.147	0.24	0.141	0.136	-0.024	0.757	0.49

CONCLUSION

- No evidence of groundwater contamination from CCB disposal has been found
- Element concentrations may be higher than native groundwater, although mostly of the same order of magnitude
- Little to zero vertical flux through cover materials is expected
- The potential for contamination of the underlying regional aquifer at the SJCM is small

ACKNOWLEDEMENTS

- bhp Billiton
- PNM
- NMMMD
- Advisory committee
- DBS&A
- Undergraduate laboratory assistance

QUESTIONS?