

Changes in Spoil Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) Following Irrigation at a Mine Site in Northwestern New Mexico

Steven Perkins, Kent Applegate, Brent Musslewhite, Bruce Buchanan, and Terry H. Brown

Study Location

Climate

Navajo Mine Climate

- 15 cm annual precipitation
- 140 cm net evaporation
- 33.5°C average maximum temperature in July
- -9.0°C average minimum temperature in January

Evaluation of Spoil Material

- Regraded spoil is sampled and analyzed
- Navajo Mine SMCRA permit outlines criteria for spoil suitability
- Spoil that is unsuitable is mitigated by burial or removal
- Suitable spoil is covered with topsoil, seeded, and irrigated for two seasons

Spoil Suitability Criteria

- pH: >5 and <9
- Acid-Base Account:
 > -5 t CaCO3/1000 t
- Texture: <50% Clay
- Saturation: <85% OR <100% only if EC>4 mmhos/cm
- Selenium-Total: <2.5 ppm
- Selenium- Soluble: <0.26 ppm
- SAR: <18 OR <40 only if: EC>4 mmhos/cm
- EC: <16 mmhos/cm

Irrigation Year 1

- Irrigation applied May to mid-October
- Germination cycle consists of four 2.9 cm applications over 13 days
- Support cycle consists of 1.4 cm applications repeated every 11 to 13 days

Irrigation Year 2

- Generally a one time application of 1.4 cm in April or May
- Supplemental applications as necessary

Spoil Weathering

- Several local studies indicated that spoil weathering during the irrigation treatments improved the suitability of the spoil for plant growth
- Through weathering processes, soluble salts would be redistributed and result in SAR and EC values more suitable for plant growth

Study

Hypothesis

- The application of irrigation, coupled with natural precipitation, would promote weathering and significantly alter spoil EC and/or SAR, thereby creating a more favorable EC/SAR relationship in the top 15 cm of the spoil profile.
- If this hypothesis is correct, it would indicate that unsuitable spoil can become suitable through weathering processes.

Study Site

- In 2005, spoil material was placed in the Dixon area at Navajo Mine
- The spoil material was sampled in 2006 to determine suitability
- The majority of samples from 0 30 cm did not meet the suitability guidelines, primarily due to EC and SAR values
- A 68 acre plot was demarcated for the study and an average of 27 cm of topsoil was placed on the plot

- In February 2006, spoil samples were collected from 79 locations in the study area
- A subset of 28 sample locations was selected for the study, with 6 more later added for a total of 34 sampling sites in the study
- The 34 sites were sampled between Oct. 23 and Nov. 6, 2006

Sample Depths Included:

- 0 10 cm above topsoil/spoil interface
- 0-5 cm below interface
- 5 10 cm below interface
- 10 15 cm below interface
- 15 30 cm below interface
- 30 60 cm below interface
- 60 90 cm below interface

- Sample pits were excavated with a backhoe
- Topsoil/Spoil samples were obtained sequentially from bottom to top of pit to avoid potential for mixing

Topsoil/Spoil Samples were sent to a commercial lab and analyzed for:

- pH
- EC
- Sodium Adsorption Ratio (SAR)
- Saturation Percentage
- Texture (sand, silt, clay %)
- Cations (Calcium, Magnesium, Sodium)
- Anions (Sulfate, Bicarbonate)

- Two soil/spoil moisture monitoring access tubes were installed at each sample site prior to backfilling
- Soil/spoil moisture measured with neutron probe

Final Sampling

- Final sampling occurred in September 2008
- Topsoil/spoil moisture samples collected and moisture content determined gravimetrically
- Topsoil/spoil samples collected 50 cm from previous pit's north wall
- Archived fall 2006 samples were re-analyzed at the same time as fall 2008 samples to ensure consistency in analysis methodologies

Final Sampling

- Depth of spoil structure
- Depth of rooting

Data Analysis

- Paired t-tests were performed that compared each laboratory analysis parameter in fall 2006 and fall 2008 for the sampled layers
- The statistical significance level was set at p<0.10

February 2006 Sampling

	Sample Depth	
Parameter	0 - 30 cm	30 - 120 cm
Navajo Mine Root Zone Suitability Guidelines	Uns	uitable
$EC \cdot SAR$	12	12
EC · Saturation %	0	1
$EC \cdot SAR \cdot Saturation \%$	7	8
Total	19	21
	(68%)	(75%)

10 - 0 cm Topsoil Layer

Parameter	Fall 2006	Fall 2008	Change	p-value
pН	7.8	7.8	No Change	0.59
EC dS/m	2.5	3.8	Increase	< 0.01
Alkalinity meq/L	2.1	2.3	Increase	0.08
Sulfate meq/L	19.4	38.1	Increase	< 0.01
SAR	9.4	11.8	Increase	< 0.01
Ca meq/L	8.7	13.8	Increase	< 0.01
Mg meq/L	1.4	2.4	Increase	< 0.01
Na meq/L	18.7	29.7	Increase	< 0.01

0 - 15 cm Spoil Layer

Parameter	Fall 2006	Fall 2008	Change	p-value
рН	7.6	7.7	Increase	< 0.01
EC dS/m	7.5	7.9	No Change	0.23
Alkalinity meq/L	3.5	2.6	Decrease	< 0.01
Sulfate meq/L	79.0	87.5	Increase	0.04
SAR	30.7	27.3	Decrease	< 0.01
Ca meq/L	10.9	13.9	Increase	< 0.01
Mg meq/L	3.6	4.4	Increase	< 0.01
Na meq/L	76.4	79.0	No Change	0.51

0 - 15 cm Spoil Layer

Sampling	Navajo Mine Root Zone Suitability		
Period	Guidelines		
Fall 2006			Unsuitable
	Saturation %		1
	$EC \cdot SAR$		1
		Total	2
			(6%)
Fall 2008			
	Saturation %		0
	$EC \cdot SAR$		0
		Total	0
			(0%)

15 - 30 cm Spoil Layer

Parameter	Fall 2006	Fall 2008	Change	p-value
pH	7.7	7.7	No Change	0.57
EC dS/m	7.5	9.7	Increase	< 0.01
Alkalinity meq/L	3.5	2.8	Decrease	< 0.01
Sulfate meq/L	80.8	107.5	Increase	< 0.01
SAR	31.1	31.6	No Change	0.59
Ca meq/L	11.0	16.0	Increase	< 0.01
Mg meq/L	3.9	6.0	Increase	< 0.01
Na meq/L	76.1	100.3	Increase	< 0.01

0 - 30 cm Spoil Layer

Parameter	Fall 2006	Fall 2008	Change ¹	p-value
pН	7.6	7.7	Increase	0.06
EC dS/m	7.5	8.8	Increase	< 0.01
Alkalinity meq/L	3.5	2.7	Decrease	< 0.01
Sulfate meq/L	79.9	97.5	Increase	< 0.01
SAR	30.9	29.4	Decrease	0.06
Ca meq/L	11.0	15.0	Increase	< 0.01
Mg meq/L	3.7	5.2	Increase	< 0.01
Na meq/L	76.2	89.6	Increase	< 0.01

0 - 30 cm Spoil Layer

Sampling				
Period	Navajo Mine Root Zone Suitability Guidelines		0 - 30 cm	
Fall 2006			Unsuitable	
	SAR		1	
	Saturation %		1	
	SAR · Saturation %		0	
	$EC \cdot SAR$		2	
		Total	4	
			(12%)	
Fall 2008				
	SAR		0	
	Saturation %		1	
	SAR · Saturation %		0	
	$EC \cdot SAR$		0	
		Total	1	
			(3%)	

30 - 60 cm Spoil Layer

Parameter	Fall 2006	Fall 2008	Change	p-value
pН	7.7	7.7	No Change	0.31
EC dS/m	7.6	8.6	Increase	0.01
Alkalinity meq/L	3.1	3.1	No Change	0.80
Sulfate meq/L	81.9	94.7	Increase	0.01
SAR	30.1	31.1	No Change	0.29
Ca meq/L	11.7	14.4	Increase	< 0.01
Mg meq/L	4.0	5.5	Increase	< 0.01
Na meq/L	76.5	88.9	Increase	0.01

60 - 90 cm Spoil Layer

Parameter	Fall 2006	Fall 2008	Change	p-value
рН	7.7	7.6	Decrease	0.08
EC dS/m	7.4	8.0	Increase	0.07
Alkalinity meq/L	3.4	3.4	No Change	0.91
Sulfate meq/L	80.2	88.5	Increase	0.03
SAR	28.7	29.4	No Change	0.53
Ca meq/L	12.4	13.9	Increase	0.06
Mg meq/L	4.3	5.3	Increase	< 0.01
Na meq/L	73.9	80.8	Increase	0.05

Topsoil/Spoil Moisture

Neutron Soil Moisture by Date - All Sites

Spoil Structure and Rooting

	Depth of	Depth of	Depth of
	Topsoil	Structure	Rooting
Site	(cm)	(cm)	(cm)
Mean	27.0	78.3	99.1
SD	9.0	37.8	36.3

Conclusions

- The spoil at Navajo Mine experienced chemical changes resulting in increased suitability
- Moisture data indicate that water was able to infiltrate into and percolate through the soil/spoil profile
- Spoil structure and root development extended into the spoil profile
- Cumulatively, the chemical analyses and observations of spoil structure and root development support the conclusion that over time, the spoil material at Navajo Mine became more favorable for reclamation.

bhpbilliton resourcing the future