Cost Saving & Performance Enhancements Modifications at a Lime-Based Treatment System

Jon Dietz, Ph.D.
& Tim Gourley, P.E.
Dietz-Gourley Consulting LLC
| Dietz@DGengr.com
| www.DGengr.com

Rushton AMD Treatment System

Pennsylvania Mines, LLC

250 ft

Chemistry of the Rushton AMD Discharge

Pumped Flow = 3,000 - 5,000 gpm

Rushton	Mine AMI	O Chemistry	from the Ini	itial Evalua	tion con	ducted on Mar	ch 31, 2010.
Temp		Conduct.	"Hot" Acidity	Cold Acidity	Iron	Manganese	Aluminum
°C	рН	μS	mg/L (as	CaCO ₃)	mg/L	mg/L	mg/L
10.4	3.3	1950	400	600	121.5	13.5	24.0

Rushton	Mine AMI	D Chemistry	from the Pr	e-aeration	Study co	nducted on Jul	ly 27, 2010.
Temp		Conduct.	"Hot" Acidity	Cold Acidity	Iron	Manganese	Aluminum
°C	рН	μS	mg/L (as	CaCO ₃)	mg/L	mg/L	mg/L
10.6	4.7	1650	196	306	105.2	8.04	9.42

Treatment Process Evaluation & Improvements at the Rushton Treatment Plant

- Lime Neutralization Process
- Mixing/Aeration Process
- Polymer Flocculation Process
- Settling Process
- Sludge Management

Lime Neutralization of AMD

Water Chemistry
Impacts on Treatment Approaches

Hydrated Lime System

1. Silo Storage

2. Powder Feed System

a) Vibrator/Auger Feed

- 3. Slurry Production
 - a) Mixing Tank
 - b) Clean Water (Process) Source
- 4. Slurry Dosing
 - a) Liquid Feed System
 - b) Scale Formation
- 5. Mixing System
 - a) Mix & Dissolve Slurry
 - b) Oxidize & Precipitate Metals

Implications of Chemistry

Impacts of Carbon Dioxide (H₂CO₃*) on Lime Dosing

Acidity & Alkalinity Definitions

Mine Drainage Waters:

Alkalinity =
$$[HCO_3^{-1}] + [CO_3^{2-1}] + [OH^{-1}]$$

Endpoint pH_{4.0-4.8}

"Hot" Acidity =
$$[H^+]$$
 + $3[Al^{3+}]$ + $3[Fe^{3+}]$ + $2[Fe^{2+}]$ + $2[Mn^{2+}]$- Alkalinity Endpoint $pH_{8.o-8.5}$

$$Net \ Acidity = [H^+] + 3[Al^{3+}] + 3[Fe^{3+}] + 2[Fe^{2+}] + 2[Mn^{2+}].... - Alkalinity$$

$$Calculated \ Acidity = (50,000\times10^{-pH}) + (5.7\times C_{al}) + (2.7\times C_{Fe_{3+}}) + (1.8\times C_{Fe_{3+}}) + (1.8\times C_{Mn}) - C_{Alkalinity}$$

Cold Acidity =
$$[H^+]$$
 + $[H_2CO_3^*]$ + $3[Al^{3+}]$ + $3[Fe^{3+}]$
Endpoint $pH_{8.o-8.5}$

Carbon Dioxide Acidity =
$$[H_2CO_3^*]$$
 = Cold Acidity – Hot Acidity
Range: 5 to 250 mg/L (as CaCO₃)
For AMD pH water with pH < 5

Effects of Carbon Dioxide Acidity on Lime Dose

Complications of Lime Dose

2) Calcium Solubility as a function of pH

```
Step 1: 2CO_2 + Ca(OH)_2 \rightarrow Ca^{2+} + 2HCO_3^{-1}
```

Step 2:
$$2HCO_3^- + Ca(OH)_2 \rightarrow H_2O + Ca^{2+} + 2CO_3^{2-}$$

Step 3: $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$

Comparison of hydrated lime dose tests

(AMD inlet on left and aerated AMD on right)

Field Ca(OH)₂ Titrations

Effects of Carbon Dioxide on Lime DoseRushton Mine Raw Water Calcium = 170 mg/L

Pre-Aeration System at the Rushton AMD Treatment Plant

Dention Time = 30 min. at Max. Flow (4,700 gpm)

Two (2) 30 Hp Blowers delivering 1,000 SCFM ea.

Effects of Pre-aeration System on Lime (Ca(OH)₂)Dose

Effects of P{re-aeration on Sludge Composition

Prior To Installation of Pre-aeration

Post Installation of Pre-aeration

LIME CONSUMPTION AFTER PRE-AERATION

- Two truck loads per week reduced to one truck load per week after Pre-aeration System Installed.
 - 22 to 24 tons per truckload ~ 1,200 tons per year.
- Operational pH adjustments require minimal increase in dose.
 - ~ 1% dose increase yields 0.1 pH change between 9 and 10
- Manganese removal can be more effectively achieved with minimal increase in lime dose.
- Estimated savings per year ~ \$150-200,000

Removal of Carbon Dioxide From Water

Natural & Mechanical Process

Background

Natural Aeration

Henrys Law

$$H = K_{eq} = \frac{P_x}{\gamma_x C_x}$$

Natural Aeration occurs at the air/water interface through mass transport processes

Air

Nitrogen N_2 Gas = 80% Oxygen O_2 Gas = 19% Carbon Dioxide CO_2 Gas = 0.003% All Other < 1% Natural Aeration can be accelerated through surface wind turbulence in ponds or cascading turbulence in streams or channels

Water

D.O. (Sat) =10 mg/L = 0.001% $H_2CO_3 = 1 - 250$ mg/L = 0.0001 to 0.025%

Mechanical Aeration

What is a Bubble?

→ a pocket of air suspended in water.

Gas Transport from and to Air Bubbles

Bubble Geometry

Sphere

An EQUAL volume of fine bubbles has 10 times the surface area as coarse bubbles

∴ 10 times the gas transport

Bubble Rise Through Water

Reactor Depth	Average Travel Time (sec)			
(ft)	Coarse	Fine		
2	2.7	13.7		
10	8.6	43.3		

Fine Bubbles rise at less than one-third the rise of coarse bubbles

∴ Greater than 3 times the gas transport

Mass (Environmental) Transport Processes?

What is a Mass Transport Process?

- It is the transport of a mass from one phase (solid, liquid, or gas) to another phase (solid, liquid, or gas) with and without reaction.
- 2. In the case of carbon dioxide removal from water, it is the transport of a soluble gas (in water) to the gaseous phase across the liquid:gas interface, and in this case with no reaction.

Mass (Environmental) Transport Coefficients

Kwa versus KL,a

- 1. Mass Transport Coefficient that is independent of Reactor Design (i.e., CSTR vs. PFR, coarse or fine bubbles, reactor depth).
- 2. Translatable across reactor types and bubble aeration types.
- 3. Can be varied with temperature if $E_{a,app}$ is known.

K_{L,a} in units of sec⁻¹

- 1. Combines K_{wa} and a_v into a Reactor Specific Value.
- 2. Specific to a single reactor and aeration type.
- 3. BLACK BOX Coefficient.

Mass (Environmental) Transport Equations (for water:air interface)

Continuously Stirred Reactor (CSTR):

Reaction Rate

$$-dc/dt = K_{wa} \times a_{v} \times (C_{eq} - C) - kX$$

 K_{wa} = Mass Transport Coefficient ; a_v = interfacial area (e.g., bubble surface area) C_{eq} = Equilibrium Concentration; C = Reactor Out Concentration

Plug Flow Reactor (PFR):

Determined by Henry's Law

$$-dc/dt = 1/(K_{wa} \times a_{v}) \times \ln (Co/(C_{eq} - C)) - kX$$

 K_{wa} = Mass Transport Coefficient; \mathbf{a}_{v} = interfacial area (e.g., bubble surface area) Co = Initial Concentration; C_{eq} = Equilibrium Concentration; C_{eq} = Reactor Out Concentration

Note: Both K_{wa} and C_{eq} are affected by temperature of the water.

Determining Mass Transport Coefficent (K_{wa}) for Carbon Dioxide Field Testing

Pre-aeration Pilot Studies

Aeration Studies
Conducted at Different
Detention Times, Air
Flows, Bubble Type, &
Water Temperature (i.e.,
different AMD source
waters).

Yield $K_{wa} \& E_{a,app}$ for CO_2

Full-scale Pre-aeration System Performance

Pre-Aeration System Design

Design Model Determines

Detention Time & Air Flow for CSTR/PFR & Bubble Types

Pre-aeration System Design Model

K_{wa} in units of m²/sec E_{a,app} in units of KJ/mole

- Adjusts for Reactor Depth.
- Adjusts for Air Volume (or Bubble Size).
- Adjusts for Air Volume to Reactor Volume.
- Adjusts for Temperature of Water.
- Computes Detention Time for PFR.
- Computes Detention Time and # of CSTRs.
- Computes Efficiency of Carbon Dioxide Removal.

Comparison of Two Distinctly Different Bubble Pre-aeration Systems

Pre-aeration System

- PA Mines Rushton Site
- Q = 4,800 gpm
- CSTR/PFR 2 in series
- Design DT ~ 28 min
- Reactor Depth = 9 ft
- Coarse Bubble Air Diffusers
- Air Flow = 1,000 cfm (60 Hp)
- AMD Temp. = 10° C
- CO2 Acidity = 150-200 mg/L
- AMD pH = 4.0 to 5.0

- Rosebud Mines St. Michael Site
- Q = 3,600 gpm
- CSTR/PFR 4 units
- Design DT ~ 3.1 min
- Reactor Depth = 2 feet
- Fine Bubble Air Diffusers
- Air Flow = 13,000 cfm (120 Hp)
- AMD Temp. = 12° C
- CO₂ Acidity = 180 mg/L
- AMD pH = 5.5 to 6.0

Model Results for the Two Bubble Pre-aeration Systems

Pre-aeration System

- PA Mines Rushton Site
- Q = 4,800 gpm
- Predicted DT = 28 min

- Rosebud Mines St. Michael Site
- Q = 3,600 gpm
- Predicted DT ~ 3.6 min

Direct Comparison of Two Distinctly Different Bubble Pre-aeration Systems (based on Model)

Pre-aeration System

- PA Mines Rushton Site
- Q = 4,800 gpm
- Design DT ~ 28 min
- AMD Temp. = 10° C
- CO₂ Acidity = 180 mg/L
- Removal = 90%
- CSTR/PFR 2 units in series
- Air Flow = 1,000 cfm (60 Hp)

- Rosebud Mines St. Michael Site
- Q = 4,800 gpm
- Design DT ~ 3.6 min
- AMD Temp. = 10° C
- CO₂ Acidity = 180 mg/L
- Removal = 90%
- CSTR/PFR 6 units in series
- Air Flow = 19,500 cfm (180 Hp)

Direct Comparison of Costs for Bubble Pre-aeration Systems

Pre-aeration System

- PA Mines Rushton Site
- Q = 4,800 gpm

- Eq. Capital Costs ~ \$550,000
- Electricity Costs ~ \$28,500/yr
- Maintenance Low
- Lime Savings ~ \$200,000/yr

- Rosebud Mines St. Michael Site
- Q = 4,800 gpm

- Eq. Capital Costs ~ \$400,000
- Electricity Costs ~ \$94,500/yr
- Maintenance High
- Lime Savings ~ \$200,000/yr

Conclusion of Pre-aeration Systems Design Modeling & Comparison

- Model Adequately Predicts A Range of Bubble Preaeration Designs
 - Bubble Type, Reactor Type, Reactor Depth, Temperature, Air Flow, etc.
- Can Be Used as a Design Tool to Determine DT for Pre-aeration Systems
 - Various designs, equipment, configurations, etc.
- Selection of Pre-aeration System is Owner Decision
 - Capital Costs
 - Operating Costs
 - Maintenance Requirements
 - Site/Existing Conditions