Water Quality Impacts from Mining at the Tar Creek Superfund Site

Tar Creek at Douthat

Douthat Area Discharge

Ottawa County, Oklahoma

Presented By

David Cates Engineer Land Protection Division Oklahoma Department of Environmental Quality David.Cates@deq.ok.gov

June 17, 2014

Site Mine History Contaminant Sources Geology & Hydrology Receptors / Impacts Superfund Actions

Douthat Diversion

Tar Creek Superfund Site Location

40 square miles in Northern Ottawa County, OK
 Picher, Cardin, Quapaw, Commerce, and North Miami

Mining Field History

Lead and Zinc Sulfide Ores Room & Pillar Mining (1912–70) (av. 15 ft. Ceilings; some > 100 ft.) Milling (~140 mills in 1925) 120 million yd³ of chat 1000s of acres of chat Hundreds of open mine shafts **Subsidence 300 miles of tunnels** (100 – 300 feet bgl; flooded) Mine Pool (76,000K acre-ft) Mine Drainage (began in 1980)

Picher Mine Pool

47K to 100K acre-ft (15 – 33 Billion Gallons);
Circum Neutral pH (~6.4), High Sulfate, TDS, SC, Ca, Mg, Fe, Zn, Pb, Ni, Cd, As
40 – 100 years to flush : Younger: 40 yrs (t_f = 4t_r); t_r = 10yrs (1970 – 1980)

Mine Water Discharges

Mayer Ranch Discharge

Began ~1980 Metals (Fe, Zn, Pb, Ni, Cd, As) pH (~6.0), dropped to 3 Toxic to aquatic organisms Precipitation of oxy-hydroxides Lower Metals Conc. over time

Artesian Flow of MW Douthat

- Net Alkaline
- Q Varies with mine pool elevations

Discharge Water Quality

Parameter	Mayer Ranch PTS Design Influent	Representative Beaver Creek artesian discharge	Estimated Tar Creek artesian Discharge at Douthat
рН	5.95	6.62	6.2
Total alkalinity	393	185	100
Net alkalinity	29	90	
Fe	192	9.28	55.1
Zn	11	1.60	8.05
Ni	0.97	0.02	0.235
Cd	0.017	0.001	0.004
Pb	0.060	0.015	0.003
As	0.064	0.020	0.014
SO ₄ -2	2239	244	1231
Discharge rate (LPM)	1000	95	8500

Chat – Another Source

LeachateChat Fines

Boone & Roubidoux Aquifers

Boone WL:
 800 ft elev.
 (~20 ft bgl)
 Roubidoux WL:
 550 ft elev.
 (~ 300 ft bgl)

Hydraulically Connected?

Generalized Cross Section

- 250 300 feet head difference (vertical gradient ~ 0.5)
 - Roubidoux used to be artesian at Miami in early1900s: 10 ft agl; now 400 ft bgl
 - Low permeability of intervening rocks (~700 feet thickness)
 - Geochem. rxns between MW & Roubidoux: Decreased Perm: (67-72%)
- Travel time estimates 15 to thousands of years
 - Abandoned wells may act as conduits (est. 5 MM gpyr from 1 well)

Roubidoux Aquifer

Primary Source of Drinking Water Underlies the Mine Pool Many Abandoned deep wells from mining

Roubidoux and Mine Water Concentrations

PARAMETER	MCLs	ROUBIDOUX	MINE WATER	MINE WATER	MINE WATER	BOONE
	(SMCLs)	1993	(1980)-Mean	(2002)-Max	(2009)-Mean	(2009-Mean)
Total Zinc (ug/l)	5,000	8.8	108,000	56,300	15,286	1,504
Total Iron(ug/l)	300	61.5	110,000	27,400	38,760	19,825
Sulfate (mg/l)	250	25	1,950	1,590	1,180	1,045
Aluminum (ug/l)	(500 – 200)	51.7	1,950	241	211	102
Total Manganese (ug/l)	50	4.3	3,370	1,700	1,040	2,578
Total Nickel (ug/l)	100	6.7	1,800	362	215	82.2
Total Lead (ug/l)	15	4.8	220	32.7	13.2	2.79
Total Cadmium (ug/l)	5	2	310	111	31.4	4.86
Total Copper (ug/l)	1,000		45	75.7	20.3	18.8
Total Arsenic (ug/l)	10		2.8	26	18.1	9.97
Dissolved Solids (mg/l)	500	290	3,410	2,660	1,860	1,949
Specific Conductance (uS/cm)		566	2,680	2,800	2,616	2,331
Hardness (mg/I CaCO3)	/	142	1,800	1,700	1,191	1,029
Alkalinity (mg/l CaCO3)		143	23	167	129	209.3
рН		7.9	6.4	5.7 (min)	6.53	6.71

Receptors / Impacts Roubidoux Aquifer Wells with Inadequate casing depth or seal Streams Metals > OWQS Sediments Metals Precipitate into **Sediments** Metals > TEC Aquatic Community

TC Task Force Environmental Health Effects Sub-Committee: "The sediments provide an effective long-term sink for metals and should effectively remove them from most biological Processes."

Initial Superfund Actions (OU1) Muncie Collapse Muncie Collapse

Result:

Lytle Creek Diversion

Discharge rate Unchanged Concentrations lower and Net Alkaline – Less metals loading Fund Balancing Waiver, lowered Beneficial Uses due to "irreversible man-made damages" – No additional Work

Initial Superfund Actions (OU1)

83 Abandoned deep Roubidoux wells located and plugged Conduct After Action Monitoring to determine the effectiveness of well plugging in protecting the Roubidoux

After Action Monitoring of Roubidoux

After Action Monitoring (Assess 2 effectiveness of remedy to protect Human Health) Surface Water & Ground Water 1987 & 1989 M Well Head Sampling: 1992-1993 Ŵ Discrete Sampling: 1996 – 2002 Long Term Monitoring 2003-2014 Well-Head Sampling (Phase I) 21 wells (10 outside mining area) 11 municipal wells within the mining area sampled once per month for 6 months and all 21 wells sampled one time only Indicator parameters have aesthetic limits (SMCLs) not health based limits. **Discrete Sampling** 2

- Packer Testing of 5 wells
- 5 New Wells installed

- Roubidoux Background
- Indicator Parameters / Tolerance Limits
 - Iron (Fe): 207 ug/l
 - Zinc (Zn): 43 ug/l
 - Sulfate (SO₄): 82 mg/l

Piper Diagram of LTM Wells (April 2010)

Operable Unit 4 Remedial Activities

OK Plan – Mayer Ranch PTS Congressional Funding (2004) OU selected Mayer Ranch Site in Commerce Monitored & Conceptual Design Developed PTS Constructed in 2008 (Design Build) PTS Template for TC 5 ac 1000 L/min (265 gpm) Meets OWQS Low tolerant species returning \$1.2 million

OU5 - Sediments

What's Next?

Funded

Design – Build

Parameter	MRPTS	RHMW-2	UT-P
Q (L/min)	570 to 950	NA	$\textbf{354} \pm 8.75$
pH*	5.95	5.47 ± 0.05	6.01 ± 0.03
Tot. Alkalinity*	393	255 ± 5.34	311 ± 4.73
SO4-2*	2239 ± 26	2348 ± 80.9	2040 ± 63.2
PO4 ^{-3*}		$\textbf{10.6} \pm 0.66$	2.59 ± 0.37
Fe*	$\textbf{177} \pm 2.33$	207 ± 2.35	$\textbf{138} \pm 0.80$
Zn*	8.29 ± 0.078	$\textbf{5.91} \pm 0.08$	10.9 ± 0.36
Mn*	1.51 ± 0.016	1.73 ± 0.04	5.34 ± 0.16
Ni*	$\textbf{0.945} \pm 0.015$	0.68 ± 0.01	0.59 ± 0.01
Cd*	$\textbf{0.016} \pm 0.003$	0.019 ± 0.001	0.037 ± 0.001
Pb*	$\textbf{0.068} \pm 0.003$	0.081 ± 0.002	0.062 ± 0.002
As*	0.063 ± 0.002	0.086 ± 0.001	0.040 ± 0.001

Sanar

Parameter	Influent	Final effluent	Removal
Q (L/min)	570 to 950		
pН	5.95	7.02	
Alkalinity	393	205	
SO_4	2239 ± 26	2047 ± 72	
Fe	177 ± 2.33	0.57 ± 0.207	99.7
Zn	8.29 ± 0.078	0.096 ± 0.037	98.84
Mn	1.51 ± 0.016	1.38 ± 0.197	8.61
Ni	0.945 ± 0.015	0.035 ± 0.007	96.30
Cd	0.016 ± 0.002	BDL(0.00064)	96.0
Pb	0.068 ± 0.003	BDL(0.019)	72.06
As	0.063 ± 0.002	BDL (0.022)	65.08

Questions

David.Cates@deq.ok.gov