### HEIGHT OF THREE HARDWOOD SPECIES GROWING ON MINE SITES COMPARED TO NATURAL CONDITIONS

### KARA DALLAIRE, JEFF SKOUSEN, JAMIE SCHULER JUNE 11, 2015



West Virginia largest coal producer in the Appalachian region

90 active surface mines in 2013

Over 30 million Mg coal

Sources: Bise, 2013; U.S EIA, 2014

78% Eastern deciduous forests

Wood production

Ecosystem functions

Wildlife habitat

## WV Forests



Source: Burger, 1999

### Forestry Reclamation Approach



### 5 Steps:

- 1. Create suitable rooting medium
- 2. Do not compact
- 3. Use tree compatible ground cover
- 4. Plant at least two types of trees
- 5. Use proper planting techniques

Source: Burger et al., 2005

## Brown vs. Gray Sandstone

Brown = 😳 Lower pH Lower EC > Fines



Sources: Angel et al, 2006; Burger et al., 2005; Conrad et al., 2008; Haering et al., 2004; Skousen et al., 2011; Daniels and Amos, 1984; Rodrigue and Burger, 2004



## Amendments Improve Growth!

Sources: Angel et al., 2008; Emerson et al., 2009; Sena et al., 2014; Showalter et al., 2009; Thomas and Skousen, 2011; Wilson-Kokes, 20013a and 2013b

### Tree Height (ft.)

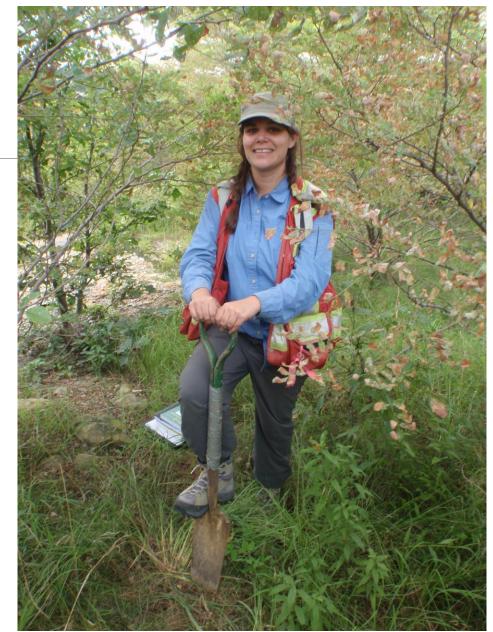


Source: Burger et al.

## Methods

Two mine sites in WV

- Birch River
- Catenary


Yearly tree growth and soil samples collected

Data from Fernow Experimental Forest

• Two studies

Web Soil Survey

• Calculate pre-mine SI



## **Birch River**

Established in 2007

Brown

Gray

Mulch



## Catenary

# Established in

2005

Brown

Gray

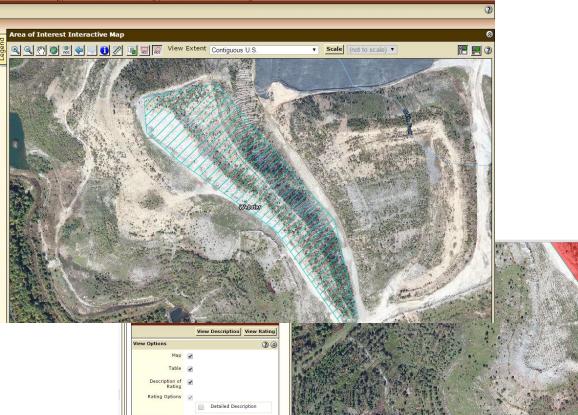


## **Fernow Experimental Forest**

### Smith (1983)

- Clear-cut with release
- Tulip poplar
- Northern red oak
- SI 75
- SI 62

### Trimble (1973)


- Clear-cut without release
- Tulip poplar

### USDA

Archived Soil Surveys | Soil Survey Status | Glossary | Preferences | Link | Logout | Help Contact Us | Subscribe 🔜 |

Soil Map Soil Data Explorer Download Soils Data Shopping Cart (Free) Area of Interest (AOI)

| Search                |                                                                                         |           |
|-----------------------|-----------------------------------------------------------------------------------------|-----------|
| Area of Interest      |                                                                                         | é         |
|                       | Open All                                                                                | Close All |
| AOI Properties        |                                                                                         |           |
|                       |                                                                                         | Clear AOI |
| AOI Information       |                                                                                         | 20        |
| Name                  |                                                                                         |           |
| Map Unit Symbols      | <ul> <li>Use Soil Survey Area M<br/>Symbols</li> <li>Use National Map Unit S</li> </ul> |           |
| Area (acres)          |                                                                                         | 17.7      |
| Soil Data Available f | rom Web Soil Survey                                                                     | 20        |
| Webster County, We    | st Virginia (WV101)                                                                     |           |
| Data Availability     | Tabular and Spatial, comple                                                             | te        |
| Tabular Data          | Version 7, Sep 26, 2014                                                                 |           |
| Spatial Data          | Version 3, Dec 30, 2013                                                                 |           |
|                       |                                                                                         | Clear AOI |
| Import AOI            |                                                                                         | 6         |
| Export AOI            |                                                                                         | 6         |
| Quick Navigation      |                                                                                         | e         |
| Address               |                                                                                         |           |
| State and County      |                                                                                         |           |



**Basic Options** 

Advanced Options

Tree northern red oak V Schnur 1937

View Description View Rating

23

(820)

Iowa Corn Suitability Rating (CSR2)

Range Production (Favorable Year)

A Warning: Soil Ratings Map may not be valid at this scale.

Web Soil Su

AAA

You have zoomed in beyond the scale at which the soil map for this area is intended to be used. Mapping of soils is done at a particular scale. The soil surveys that comprise your AOI were mapped at 1:24,000. The design of map units and the level of detail shown in the resulting soil map are dependent on that map scale.

×

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

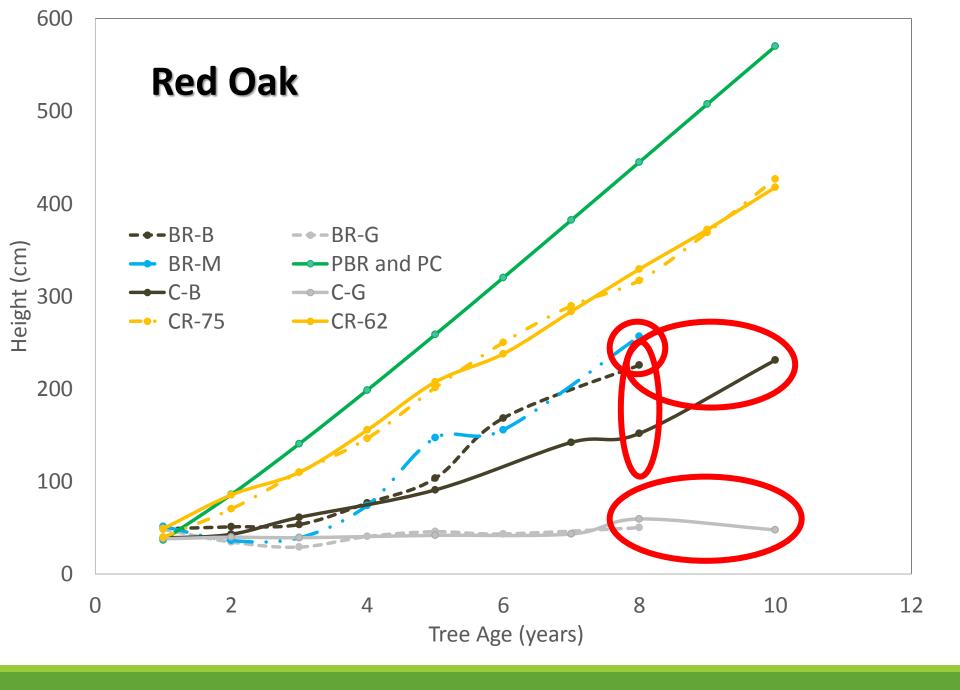
| Range Production (Normal Year)            | Tables – Forest Productivity (Tree Site Index): northern red oak (Schnur 1937 (820)) – Summary By Map Unit 🛛 🖗 |                                                                  |               |              |                |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------|----------------|
| Range Production (Unfavorable Year)       |                                                                                                                |                                                                  |               |              |                |
| Yields of Irrigated Crops (Component)     | Summary by Map Unit – webster County, west Virginia (WV101)                                                    |                                                                  |               |              | 8              |
| Yields of Irrigated Crops (Map Unit)      | Map unit symbol                                                                                                | Map unit name                                                    | Rating (feet) | Acres in AOI | Percent of AOI |
| Yields of Non-Irrigated Crops (Component) | CnF                                                                                                            | Clifftop channery silt loam, 35 to 70 percent slopes, very stony | 75            | 6.5          | 36.6%          |
|                                           | GbC                                                                                                            | Gilpin silt loam, 8 to 15 percent slopes                         | 80            | 11.3         | 63.4%          |
| Yields of Non-Irrigated Crops (Map Unit)  | Totals for Area of Interest                                                                                    |                                                                  |               | 17.7         | 100.0%         |
| Waste Management 🕢 🎯                      |                                                                                                                |                                                                  |               | 17.7         | 100.0%         |
|                                           | Decoriation Fores                                                                                              | t Deaductivity (Teon Cita Indox)                                 |               |              | <u>م</u>       |

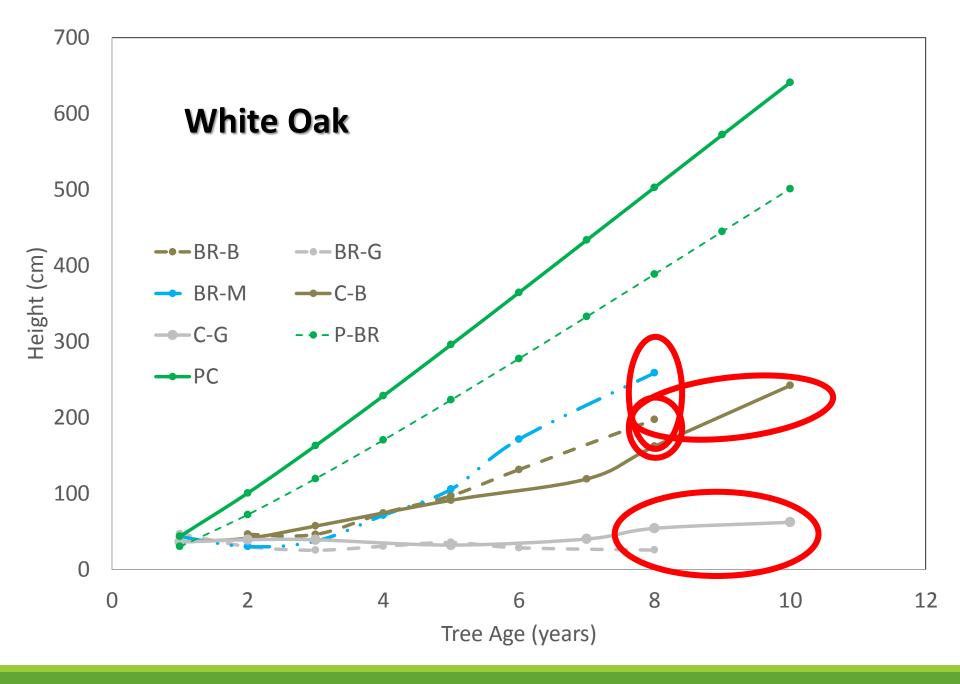
## Site Index on Mine Sites

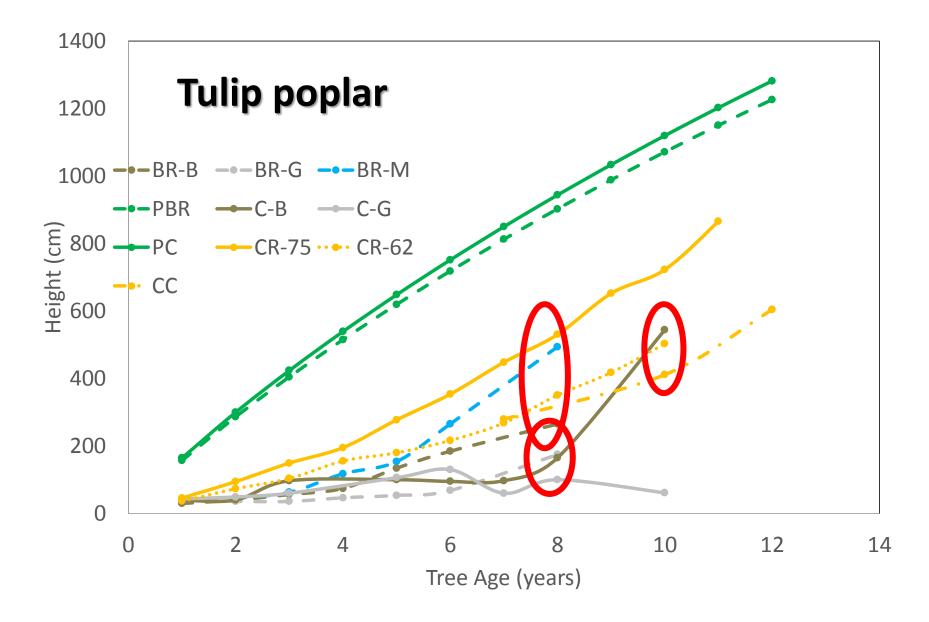
| Site           | Northern   | Northern White oak |           |
|----------------|------------|--------------------|-----------|
|                | red oak SI | SI                 | poplar SI |
| Birch<br>River | 78         | 78                 | 92        |
| Catenary       | 78         | 85                 | 95        |

## **Average Site Index**

Forest productivity (SI) from Web Soil Survey Weighted average of soil types on sites Formulation equation


$$H = b_1 S^{b_2(1 - e^{b_3 A})} b_4 S^{b_5}$$


H = Heightbi = Regression ParametersS = Site IndexA = Age


| Birch River – brown sandstone         | BR-B         |
|---------------------------------------|--------------|
| Catenary – brown sandstone            | C-B          |
| Birch River – gray sandstone          | BR-G         |
| <b>Catenary – gray sandstone</b>      | C-G          |
| Birch River – mulch                   | BR-M         |
| <b>Clear-cut with release – SI 62</b> | <b>CR-62</b> |
| <b>Clear-cut with release – SI 75</b> | <b>CR-75</b> |
| <b>Clear-cut without release</b>      | CC           |
| <b>Pre-mining – Birch River</b>       | PBR          |
| <b>Pre-mining – Catenary</b>          | PC           |

| Treatment | pН         | EC (dS/m) | Fines (%) |  |
|-----------|------------|-----------|-----------|--|
| BR-B      | 5.2        | 0.01      | 45        |  |
| C-B       | 5.4        | 0.01      | 60        |  |
| BR-G      | 6.5        | 0.01      | 49        |  |
| C-G       | 6.8        | 0.01      | 42        |  |
| BR-M      | 7.0        | 0.04      | 43        |  |
| Fernow    | 4.1 to 5.2 | 0.0       | Unknown   |  |
| PB        | 4.6 to 4.7 | 0.0       | Unknown   |  |
| PC        | 4.7 to 4.9 | 0.0       | Unknown   |  |

| Treatment | Ca                    | K   | Al  | Fe    |  |
|-----------|-----------------------|-----|-----|-------|--|
|           | cmol <sub>c</sub> /kg |     | m   | mg/kg |  |
| BR-B      | 6                     | 0.6 | 402 | 219   |  |
| C-B       | 7                     | 0.6 | 431 | 154   |  |
| BR-G      | 6                     | 0.3 | 113 | 126   |  |
| C-G       | 10                    | 0.4 | 150 | 149   |  |
| BR-M      | 197                   | 12  | 115 | 51    |  |







## **Tree Growth**

- Trees growing on mines Not original productivity
- Limitations to height estimates
- Weeds, animal and insect damage, stock quality, planting techniques



## Conclusions

Birch River > Catenary

Brown sandstone > gray

Mulch increases growth

Tulip poplar:

 Brown and mulch > clearcut



## Acknowledgements

Paul Ziemkiewicz (WVU)

Scott Eggerud (US OSM)

John McHale, Mitch Kalos, Jonathon Sanchez, Jeff Andrews (Patriot Coal)

Keith O'Dell, Bill Young, Mike Duvall (Arch Coal)

Paul Emerson, Curtis Delong, Calene Thomas, Lindsey Wilson-Kokes (former WVU grad students)

Steffany Scagline (WVU)

Angel, P., C. Barton, R. Warner, C. Agouridis, T. Taylor, and S. Hall. 2008. Forest establishment and water quality characteristics as influenced by spoil type on a loose-graded surface mine in eastern Kentucky. p. 28-65. *In:* Barnhisel, R. (ed), Proceedings, 2008 American Society of Mining and Reclamation. June 4-8, 2008. Richmond, VA.

Angel, P.N., D.H. Graves, C. Barton, R.C. Warner, P.W. Conrad, R.J. Sweigard, and C. Agouridis. 2006. Surface mine reforestation research: evaluation of tree response to low compaction reclamation techniques. p. 45-58. *In:* Barnhisel, R. (ed.), Proceedings, 2006 American Society of Mining and Reclamation. March 26-30, 2006, St. Louis, MO.

Bise, J.B. 2013. Coal industry statistics. p. 1-23. *In* C.J. Bise (ed.) Modern American coal mining methods and applications. Society for Mining, Metallurgy, and Exploration, Inc. Englewood, CO.

Burger, J.A. 1999. Academic research perspective on experiences, trends, constraints and needs related to reforestation of mined lands. p. 63-74. In: Proceedings, Enhancements of Reforestation at Surface Coal Mines: Technical Interactive Forum, March 23-24, 1999. Fort Mitchell, KY.

Burger, J., D. Graves, P. Angel, V. Davis, and C. Zipper. 2005. The forestry reclamation approach. Forest Reclamation Advisory No. 2. p. 4. Available at <u>http://arri.osmre.gov/Publications/Publications.shtm#FRAs</u>. Accessed 8 January 2015.

Carmean, W.H. 1975. Forest quality evaluation in the United Sates. Advances in Agronomy. 27: 209-269.

Carmean, W.H. 1977. Site classification for northern forest species. p. 205-239. *In:* Intensive Culture of Northern Forest Types Symposium Proceedings. USDA Forest Service General Technical Report NE-29.

Carmean, W.H., J.T. Hahn, and R.D. Jacobs. 1989. Site index curves for forest species in the eastern United States. USDA Forest Service, North Central Forest Experiment Station. Gen. Tech. Rep. NC-128. St. Paul, MN.

Conrad, P.W., R.J. Sweigard, V. Badaker, D.H. Graves, and C.D. Barton. 2008. The impact of surface applied mulches on selected physical properties of reclaimed mountaintop removal sits. Inter. J. Mining, Reclamation and Environment. 22:222-236.

Daniels, W.L. and D.F. Amos. 1985. Generating productive topsoil substitutes from hard rock overburden in the southern Appalachians. Env. Geochem. & Health. 7:8-15.

Emerson, P., J. Skousen, P. Ziemkiewicz. 2009. Survival and growth of hardwoods in brown versus gray sandstone on a surface mine in West Virginia. J. Environ. Qual. 38:1821-1829.

Haering, K.C., W.L. Daniels, and J.M. Galbraith. 2004. Appalachian mine soil morphology and properties: effects of weathering and mining method. Soil Sci. Soc. Am. J. 68:1315-1325.

Rodrigue, J.A. and J.A. Burger. 2004. Forest Soil productivity of mined land in the Midwestern and Eastern coalfield regions. Soil Sci. Soc. Am. J. 68:833–844.

Sena, K., C. Barton, S. Hall, P. Angel, C. Agouridis. 2014. Influence of spoil type on afforestation success and natural vegetation recolonization on a surface coal mine in Appalachia, United States. Restoration Ecology. Available at <a href="http://onlinelibrary.wiley.com/doi/10.1111/rec.12164/pdf">http://onlinelibrary.wiley.com/doi/10.1111/rec.12164/pdf</a>. Accessed 08 February 2015.

Skousen, J. Showalter, J.M., J.A. Burger, and C.E. Zipper. 2010. Hardwood seedling growth on different mine spoil types with and without amendment. J. Environ. Qual. 39: 483-491.

Skousen, J., , C. Zipper, J. Burger, C. Barton, and P. Angel. 2011. Selecting materials for mine soil construction when establishing forests on Appalachian mine sites. Forest Reclamation Advisory No. 8. p. 6. Available at <a href="http://arri.osmre.gov/FRA/Advisories/FRA\_No.8%20Soil%20Materials.pdf">http://arri.osmre.gov/FRA/Advisories/FRA\_No.8%20Soil%20Materials.pdf</a>. Accessed 08 February 2015.

Smith, H.C. 1983. Growth of Appalachian hardwoods kept free to grow from 2 to 12 years after clearcutting. USDA Forest Service, Northeastern Forest Experiment Station. Res. Paper. NE-528. Broomall, PA.

Thomas, C., and J. Skousen. 2011. Hardwood tree performance on amended brown and gray mine spoils after four years. p. 665-675. *In:* Barnhisel, R. (ed.), Proceedings, 2011 American Society of Mining and Reclamation, June 12-16, 2011. Bismark, ND.

Trimble, G.R. 1973. Response to crop-tree release by 7-year old stems of yellow-poplar and black cherry. USDA Forest Service, Northeastern Forest Experiment Station. Res. Paper. NE-253. Upper Darby, PA.

U.S. Energy Information Administration (EIA). 2013. Annual coal report 2012. Available at <u>http://www.eia.gov/coal/annual/pdf/acr.pdf. Accessed 19 January 2015</u>.

USDA. 2014b. Web Soil Survey. Available online at <u>http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>. Accessed 01 February 2015.

Wilson-Kokes, L., C. Delong, C. Thomas, P. Emerson, K. O'Dell, and J. Skousen. 2013a. Hardwood tree growth on amended mine soils in West Virginia. J. Environ. Qual. 42:1363-1371.

Wilson-Kokes, L., P. Emerson, C. Delong, C. Thomas, and J. Skousen. 2013b. Hardwood tree growth after eight years on brown and gray mine soils in West Virginia. J. Environ. Qual. 43:1353-1362.

