A Comparison of Soil Condition, Vegetation Communities, and Soil Redox Characteristics of Surface Mined Wetlands and Natural Wetlands in Southern Illinois

Blair Borries¹, Karl W. J. Williard², Jon Schoonover², and Samuel Indorante³ ¹M.S. candidate – Southern Illinois University-Carbondale ²Professor of Forestry– Southern Illinois University-Carbondale ³Soil Survey Leader – USDA-NRCS

Soil Properties of Restored Wetlands vs. Natural Wetlands

Purpose: Evaluate the soil biogeochemical function and herbaceous vegetation of wetlands restored on surface mines

- Do mined wetland soils retain or recover levels of nutrient and organic matter pools equal to natural wetlands?
 - as measured by the following parameters:
 - Soil Organic Matter (SOM), Soil C, Soil N, Soil P, C/N ratio
- Do soil nutrient organic matter pools change with time in mined wetlands
 - as measured by tests of trends by soil age in the following parameters:
 - SOM, C, N, P, and C/N ratio
- Do mined wetlands have the same hydrology as natural wetlands?
 - as measured by IRIS tubes
 - As measured by the frequency and duration of soil saturation in wetlands
- Do mined wetlands have the same vegetation as natural wetlands?
 - as measured by the following parameters:
 - Taxa richness, Wetland status prevalence index, % bare soil

Study Area: Before and after mining

Study Design: Sampling plan

Study Design: Transect x-section

Soil properties vary depending on topographic position - sampling was split into upper and lower sample points

Methods: Soils

- Samples collected June-August 2012
- ρ_b and gravimetric soil moisture (GSM) collected with an impact driven corer with a known volume
- All other samples were collected with a 5 cm diameter auger, air dried and crushed
- Samples were analyzed for SOM, Bray II P, and CEC by Brookside labs
- C, N, and C/N analyzed with a total C/N analyzer at SIUC
- ρ_b and GSM were measured by oven drying impact corer samples
- Soil texture was measured by hydrometer method

Methods: Vegetation and hydrology

- Percent cover of each herbaceous species and % bare area in a 0.25 m² plot was estimated according to Daubenmeier (1954) at each SP
- Canopy cover from densiometer
- Taxa richness (TR) and wetland plant prevalence index (PI) was also calculated
- IRIS tubes created according to Jenkinson and Fransmeier (2005), analyzed with gridded contact paper according to Rabenhorst (2011)
- SP surveyed with total station and tied to RTK-GPS vertical benchmarks

Calculations: Hydrology

- Hydrology variables: inundation (IN) and saturation (SAT) count
 - Functions of groundwater (GW) elevation and difference in elevation between SP and associated monitoring well (well)
 - Assumptions: GW elevation is equal across a block of transects associated with a well

Well GW Depth = Well elevation – depth to GW (from collar)

SP GW Depth = SP elevation – Well GW Depth

IN count = # times GW > SP elevation

SAT count = # times GW was within 30 cm of SP elevation

Methods: Statistics

- Data were separated by location (upper or lower) and depth (0-15 cm or 15-30 cm)
 - Treatments were compared using a one-way ANOVA (PROC GLM in SAS) model or the Kruskal-Wallace rank-sum test (soil N and C/N)
 - Trends by soil age in MW were tested using a linear regression test when the same between MPW and MBFW and a step-trend ANOVA/K-W test when different between MPW and MBFW

Wetland area	Treatment Class	Lat (dd)	Long (dd)	Soil Age (years)	Size (km²)	Watershed (km ²)
GAL1	MBFW	38.080518	-89.546028	28	3.21E-03	4.08E-02
GAL2	MBFW	Soil age	ranges	28	4.65E-03	1.23E-02
GAL3	MBFW	from 19-	28 years	28	1.05E-03	5.25E-02
GALC1	MPW	38.058720	-89.532437	25	9.36E-03	2.87E-02
GALC2	MPW	38.055909	-89.531824	25	3.39E-02	5.51E-02
BON1	MBFW	38.057239	-89.525484	21	8.67E-03	3.47E-02
BONC1	MPW	38.062799	-89.521813	19	1.12E-02	6.72E-02
BONC2	MPW	38.060407	-89.523414	19	1.23E-02	7.87E-01
LGAL1	NW	38.018040	-89.439554	N/A	1.21E-02	3.70E-02
LGAL2	NW	38.017704	-89.436491	N/A	8.73E-03	2.35E-02
LGAL3	NW	38.026255	-89.435087	N/A	2.04E-03	1.26E-02
LGAL4	NW	38.026991	-89.431518	N/A	2.50E-03	1.36E-02

SOM: Comparisons among treatments at different sample locations and depths

Soil N: Comparisons among treatments at different sample locations and depths

Soil Bray II P: Comparisons to Natural Wetlands at different sample locations and depths

ρ_b and GSM: Comparisons among treatments at different sample locations

Soil pH: Comparisons among treatments at different sample locations and depths

%Sand (Black) and %Clay (Hash): Comparisons among treatments at different sample locations and depths

Sand/Clay % in Lower Transect Points

Soil pH: Trends with age at different sample locations and depths

Soil N: Comparisons by age at different sample locations

<N in older soils of MBFW (upper SP)

>N in older soils of MPW (lower SP) <N in older soils of MBFW (lower SP)

Dominant Species at each wetland type:% of total cover

NW - Upper Sample Points		NW - Lower Sample Points			
Symphyotrichum lateriflorum	28.7	Symphyotrichum lateriflorum	11.17		
Microstegium vimineum	19.7	Carex Frankii	6.22		
Elymus virginicus	9.0	Carex sp.	5.16		
Toxicodendron radicans	6.2	Lysimachia nummularia	4.85		
Ranunculus hispidus	6.0	Saururus cernuus	4.21		
MPW - Upper Sample Points		MPW - Lower Sample Points			
Phragmites australis	55.8	Cyperus strigosus	51.98		
Iva annua	21.5	Eleocharis acicularis	15.04		
Carex vulpinoidea	12.9	Cinna arundinacea	8.62		
Eleocharis obtusa	10.4	Ammannia auriculata	6.10		
Carex Frankii	4.5	Echinochloa crus-galli	2.71		
MBFW - Upper Sample Points		MBFW - Lower Sample Points			
Carex vulpinoidea 34.3		Carex vulpinoidea	16.43		
Elymus virginicus	22.4	Eleocharis obtusa	15.85		
Iva annua	13.5	Typha latifolia	9.25		
Persicaria virginiana	30	Phyla lanceolata	8 50		

lva annua

5.86

2.9

Carex Frankii

Vegetation: PI, TR, bare area, and canopy cover. Comparisons among treatment groups

<pi (wetter="" plants)<="" th=""><th>Upper</th><th></th><th></th><th></th><th></th></pi>	Upper				
in MWs Sample Points			NW	MPW	MBFW
		р	mean \pm s.e	mean \pm s.e	mean \pm s.e
<tr in="" in<br="" mws="">upper SPs >TR in MPWs in</tr>	Prevalence Index Taxa Richness	<0.0001 <0.0001	$2.55 \pm 54.72a$ $3.25 \pm 0.22a$	$\begin{array}{c} \text{2.11} \pm \text{49.78b} \\ \text{1.97} \pm \text{0.24b} \end{array}$	$\begin{array}{l} 2.22 \pm 0.09 b \\ 1.86 \pm 0.18 b \end{array}$
lower SPs	Bare (%)	<0.0001	$0.08\pm0.01a$	$0.01\pm0c$	$0.05\pm0.01b$
	Canopy Cover (%)	<0.0001	93.58 ± 0.51a	$\textbf{2.25} \pm \textbf{1.14c}$	$54.72 \pm 4.86 \text{b}$
< bare area in	Lower				
MWs	Sample Points		NW	MPW	MBFW
		р	mean ± s.e	$\text{mean} \pm \text{s.e}$	$\text{mean} \pm \text{s.e}$
< canopy cover in MWs	Prevalence Index	0.0038	2.31 ± 0.19a	$1.8\pm0.07b$	$1.7\pm0.13b$
	Taxa Richness	<0.0001	$1.14\pm0.19b$	$\textbf{2.92} \pm \textbf{0.22a}$	$1.5\pm0.19b$
	Bare (%)	<0.0001	$0.17\pm0.02a$	$0.06\pm0.01b$	$0.1\pm0.02b$
	Canopy Cover (%)	<0.0001	$92.33\pm0.68a$	$0.11\pm0.11\text{c}$	$49.78 \pm 4.68 \text{b}$

Conclusions: Wetland soil properties

- Recovery or maintenance of soil nutrient pools to levels equivalent to NWs in the surface 15 cm has occurred for SOM, C, and P in all MWs and for SOM, C, N, and P in the MBFWs
- Pools at the 15-30 cm depth are equivalent for C and P – Some C pools more recalcitrant than SOM; P high in subsoil of alfisols
- Only soil pH is changing with time past 19 years at all MWs – Soils started with existing nutrient pools or accumulation leveled off after <19 years

Conclusions: Hydrology and vegetation

- Based on the 5 dominant species, all three treatment groups had a unique vegetation community
- MWs appeared wetter based on the PI and data inferred from the wells and SP elevations
- TR was higher in the lower SPs in the MPWs due to the open canopy. More vegetation analysis is required to compare diversity on a landscape level

Conclusions: Are wetlands restored on mine soils different from wetlands restored on natural soils?

- In Alabama (Sistani et al 1996) and Southern IL (Cole & LeFebvre 1991): equal SOM and C in mined wetland soils compared natural wetlands
- BS4N reclamation was able to use soils which had been under forest cover – Most wetland restoration occurs on soils depleted by rowcrop agriculture
- Hydrology controlled by channel dimensions resulting in more regular overbank flooding

Management Implications: Design and soil source important for successful restoration

- Sand% was neg. correlated with every soil nutrient and organic matter stock – signaled a different soil source for the MPWs than the MBFWs
- Prolonged inundation restricted plant growth and buildup of nutrient pools at the MPWs
- Dominance by *Phragmites australis* occurred where conditions were supportive – reduced diversity

Acknowledgements

- Knight Hawk coal
- John Gefferth, Consol Energy
- Jack Nawrot
- Ron Balch, Midwest Reclamation
- Funding provided by the OSM Technology Transfer Applied Science research grant

Questions?