Comparative Analysis of Multiple Software Used In Aiding Geomorphic Reclamation

Kristin M. Brown, H.I.T

INTRODUCTION

- Kristin M. Brown, H.I.T
 - Hydrologist In Training Certification American Institute of Hydrology
 - M.S. Hydrology Colorado School of Mines
 - B.S. Geology West Virginia University
- Currently Hydrologist with the Office of Surface Mining Reclamation and Enforcement (OSM)

BACKGROUND

- Traditional Reclamation
 - Frequently disturbs stability of existing natural landforms
 - Hydrologic Functionality Altered Streams are often removed or become armored ditches
 - Additional expenses
- Geomorphic Reclamation
 - Currently OSM Initiative
 - Design stable streams and landforms that mimic the look and functionality of nature

Empirical vs. Theoretical Based Softwares

Empirical

- Input parameters based on data collected in the field
- Field Scale

Theoretical

- Input parameters based on assumptions and data collected in the laboratory
- Laboratory Scale e.g. data collected from flume studies

Software Considered

- ▶ Carlson Natural Regrade™
- RUSLE2

DISCLAIMER: OSM IS NOT PROMOTING ONE SOFTWARE OVER ANOTHER. THERE ARE ALSO ADDITIONAL SOFTWARES OUT THERE THAT MAY BE USED IN GEOMORPHIC RECLAMATION THAT ARE NOT CONSIDERED IN THIS ANALYSIS

Theory Behind the Software

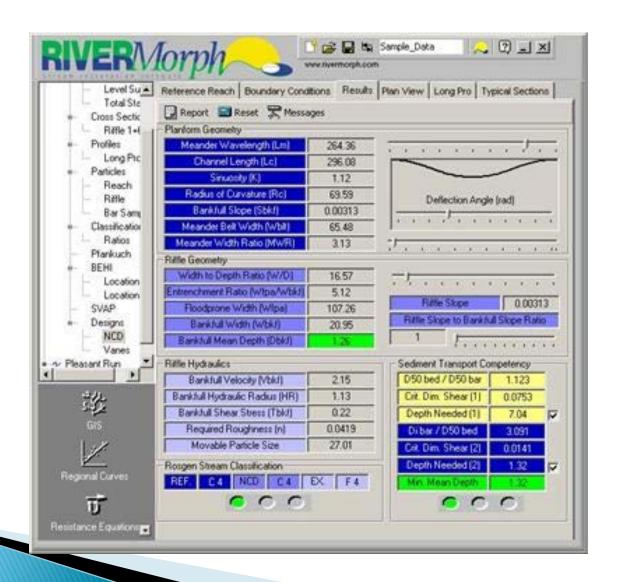
- RUSLE2 Developed by Dr. Terry Toy and the USDA. Used to estimate soil loss for erosion control planning - Theoretical Software
 - Revised Universal Soil Loss Equation

Theory Behind the Software – Continued

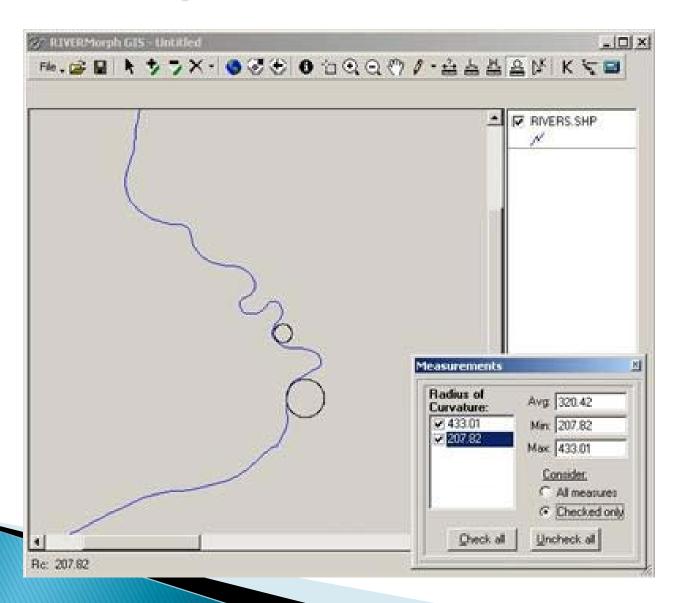
Design in both Rivermorph and Natural Regrade are based on Empirical Data (Input Parameters) collected in the field or measured at the field scale.

- Rivermorph
 - Rosgen Method www.wildandhydrology.com
- Natural Regrade
 - GeoFluv Method www.geofluv.com

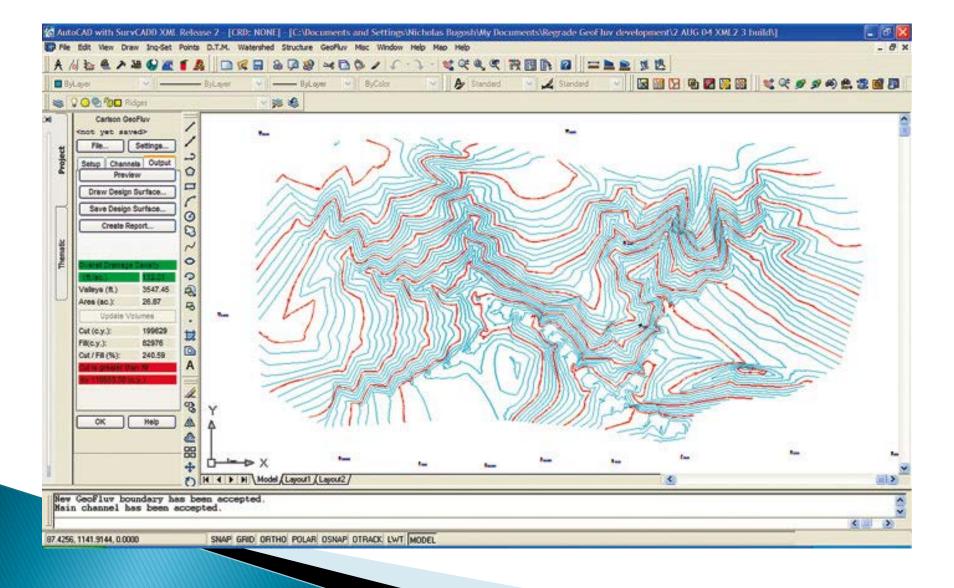
Software Overview

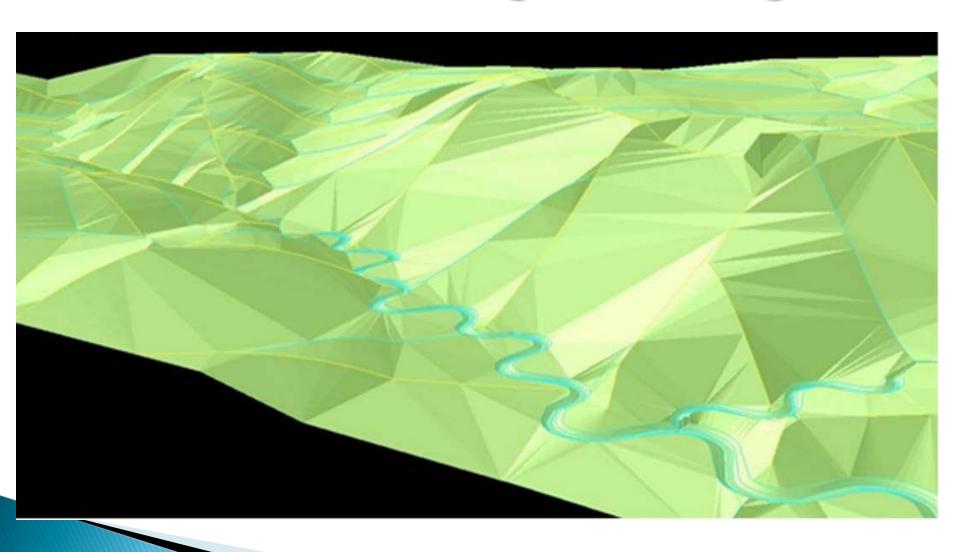

Software	Ease of Use	Software capability	Cost
RiverMorph	Need to be confident with Rosgen Method	2D Channel Design with Valley Type Consideration	\$3500
Carlson Natural Regrade	Need to be confident with Geofluv Method and AutoCAD	3D Channel and Landform Design	\$7000
RUSLE2	Familiar with Revised Universal Soil Loss Equation	Hortonian Overland Flow only - Used as a Guide for erosion control planning	FREE

Input Parameters


Software	Input Parameters
River Morph	 Cross Section Longitudinal profile Wolmann Pebble Count Geometry and Sketch Map
Carlson Natural Regrade	 Local Base Elevation Slope at local base level Drainage density Ridge to head of Channel "A" Channel Reach Length
RUSLE2	 Location/Climate Soil Type Length and Steepness of Overland Flow Path Cover Management Practice Support Practices

EXAMPLES


Rivermorph


Rivermorph

Carlson Natural Regrade

Carlson Natural Regrade Design

Future Work

- Select Site
- Collect Site Specific Input Parameters
- Use all software discussed to design Geomorphic Reclamation i.e real world application

SUMMARY AND CONCLUSIONS

- Know your input parameters and where they came from.
- All software has it usefulness, time and place.
- Geomorphic Reclamation software should be used in conjunction with each other to provide optimal design and cost effectiveness.

Thank You!

<u>kbrown2@omsre.gov</u> 303-293-5048