

B OHIO UNIVERSITY Voinovich School of Leadership and Public Affairs

Environmental Studies

Presented by

Voinovich School of Leadership and Public Affairs

Environmental Studies

HENRY BEDU-MENSAH

MSES Candidate The Voinovich School of Leadership and Public Affairs, Ohio University Athens, OH

Dr. Natalie Kruse, The Voinovich School, Environmental Studies;Dr. Kelly Johnson, College of Arts and Sciences, Biological Sciences;Dr. Dina Lopez, College of Arts and Sciences, Geological Sciences

Introduction

- Acid Mine Drainage (AMD) is the legacy of preregulation mining in southeastern Ohio.
- Lime Dosers Active Remediation strategy when space limitation exists and where passive system would not be effective .
- Used in high acid loading streams.

Objectives of Study

The purpose of this study is to investigate the factors that contribute to biological recovery in the downstream reaches of lime doser systems.

Specific Objectives

- To explore differences in biological recovery downstream of dosers systems.
- To examine the aqueous water chemistry trends to identify correlations with biological recovery.
- To assess the influence of precipitation of dissolved metals and additional alkalinity loads downstream of the doser treatment on biological improvement.

Summary of Lime Dosers installed in the Southeast Ohio watersheds.

Doser Location	Year Installed	Stream Remediated	Sub-Watershed	Watershed
Carbondale	2004	Carbondale Seeps	Hewett Fork	Raccoon Creek
Job's Hollow	2004	Job's Hollow Seeps	N/A	Monday Creek
Pine Run	2012	Pine Run Seeps	West Branch Sunday Creek	Sunday Creek
Thomas Fork	2012	Thomas Fork Seeps	Thomas Fork	Leading Creek

Methods

- Total study duration was 12 months.
- Study commenced in February 2014 and continued until January 2015.
- Eight to eleven miles downstream of dosers were sampled for analysis.

Physical / Chemical Analysis

- Field Parameters and Flow
- Alkalinity Acidity Budget
- Water Quality Analysis

Biological Recovery

• MAIS

Preliminary Macroinvertebrate Identification and Enumeration

Breakdown of sampling sites and volume

			Location/ No of Sites				
Activity		Total No of Sites	Monday Creek / Downstream Jobs Hollow Doser	West BranchSunday Creek / Downstream Pine Run Doser	Thomas Fork / DownstreamTho mas Fork Doser	Hewett Fork / Downstream Carbondale Doser	
Water Qualit Field Parameters/F	Water Quality / Field3779Parameters/Flow		9	11	11		
Field Parame / Flow or Velo	ters ocity	37	7	9	11	11	
Alkalinity Bud	dget	80	21	20	21	18	
MAIS		25	6	7	5	7	

Statistical Analysis

- Correlation and Regression analysis of data were conducted using R and Excel employing parametric and non-parametric approaches.
- Sampling results were compared to MAIS results to find the best correlation that describes the factors that enhance biological recovery.
- Downstream reaches field parameters and water quality profile for the dosers were analyzed and compared to assess differences in biological recovery.

Study Watersheds

Inset of Study Watersheds

Map showing doser location and sample sites on Hewett Fork

Map showing doser location and sample sites on Thomas Fork

Map showing doser location and sample sites on West Branch Sunday Creek

Map showing doser location and sample sites on Upper Mainstem Monday Creek

Results and Discussion

Influential Factors

- Net Alkalinity
- Water Column Metal Concentration
- Fe Concentration

Water Quality criteria limits of an AMD impacted stream, FWPCA (1968)

Parameter	Criteria Limit
pН	< 6.5 S.I.*
Conductivity	< 800 uS/cm
Alkalinity	< 20 mg/L
Sulfate	> 74 mg/L
Iron	> 0.5 mg/L
Manganese	> 0.5 mg/L
Aluminum	> 0.3 mg/L
Zinc	> 5 mg/L

* Ohio Non-Point Source Criteria Limit

Hewett Fork

pH Profile Hewett Fork, 2014 12 Sampling Date ٠ 6-Mar 10 ٠ 21-Mar ٠ 25-Mar pH..Sl.units. ٠ 6-Apr 26-Jun ٠ ٠ 18-Jul ٠ 3-Nov 8 ٠ 10-Dec 14-Jan ٠ 6 RM 11.2 RM 09.8 RM 08.3 RM 06.4 RM 04.75 RM 04 RM 11 RM 10.4 RM 0.9 Rivermile

Conductivity Profile Hewett Fork, 2014 3000 Sampling Date ٠ 6-Mar 21-Mar ٠ Conductivity.uScm. ٠ 25-Mar ٠ 6-Apr ٠ 26-Jun ٠ 18-Jul 3-Nov ٠ ٠ 10-Dec ٠ 14-Jan 1000 ٠ RM 11.2 RM 10.4 RM 09.8 RM 08.3 RM 06.4 RM 04.75 RM 04 RM 11 RM 0.9 Rivermile

Thomas Fork

2000 Sampling Date ٠ ٠ 20-Feb ٠ 19-Mar 1500 ٠ 24-Apr Conductivity.uScm. ٠ 19-May ٠ 26-Jun ٠ 18-Jul ٠ 7-Aug 15-Sep ٠ ٠ 27-Oct ... 19-Nov ٠ 30-Dec ٠ 14-Jan 500 · 4 ٠ RM 5.3 RM Rivermile RM 7.5 RM 7.3 RM 6.1 RM 4.5 RM 3.15 RM 2.56 RM 1.2

Conductivity Profile Thomas Fork, 2014

West Branch Sunday Creek

Conductivity Profile West Branch Sunday Creek, 2014

Monday Creek

pH Profile Upper Stem Monday Creek, 2014 11 Sampling Date 10 ٠ 6-Mar ٠ 28-Mar 22-Apr ٠ ٠ 10-May 9 pH..Sl.units. 2-Jul ٠ ٠ 31-Jul ٠ 9-Sep 8 29-Sep 13-Oct 19-Dec ٠ 23-Jan 7 6 RM 24.3 RM 23.3 RM 19.62 RM 26.8 RM 26.5 RM 25.3 RM 15.8 RM 14 Rivermile

Conductivity Profile Upper Stem Monday Creek, 2014

Rivermile

Correlations of Water Column Chemistry

Spearman correlations coefficient (r) matrix of MAIS scores, field parameters and stream chemistry

(Shaded boxes indicate significant correlations)

	MAIS	pН	Conductivity	Sulfate	Acidity	Alkalinity	Fe	Mn	Al
MAIS	•								
рН	0.232								
Conductivity	-0.307	0.151							
Sulfate	-0.452	0.034	0.765	•					
Acidity	-0.374	-0.458	0.177	0.195	•				
Alkalinity	0.24	0.504	0.069	-0.201	-0.415	•			
Fe	-0.511	0.041	0.093	0.307	0.019	-0.181			
Mn	-0.682	-0.204	0.424	0.589	0.356	-0.473	0.571		
Al	0.463	0.015	0.256	0.425	0.037	-0.149	0.809	0.581	•

Multivariate Regression Model Output

	Dep	bendent Variable: MAIS			
Independent Variables	Coefficient	Standard Error			
Constant	13.102	80.071			
pH	-0.112	1.129			
Sulfate	-0.003	0.006			
Alkalinity	0.062**	0.059			
Acidity	-0.022	0.059			
Fe	-0.948***	0.217			
Wshed MC	0.61	1.163			
Wshed TF	-3.586**	1.609			
Wshed WB	-1.693	1.522			
Observations		46			
R2		0.561			
Adjusted R2		0.466			
Residual Std. Error		2.549 (df=37)			
F-Statistic		5.913*** (df=8; 37)			
*p<0.1: **p<0.05, ***p<0.01					

Model Simulations

Model Simulation with Fe (all variables constant)

Model Simulation with Alkalinity (all variables constant)

Conclusions

- pH above 6.5 is important to achieve biological target.
- The combination effect of net alkalinity, and water chemistry and Fe concentrations are important complement of pH target to enhance biological recovery.
- The model proved reliable to relate MAIS scores to water chemistry in the four watersheds

Acknowledgement

Acknowledgment

Dr. Natalie Kruse Dr Dina Lopez Dr Kelly Johnson Dr Ani. Ruhil Steve Porter

Shannon Stewart Homer Elliot Michelle Benedum

Jen Bowman Sarah Landers Amy Mackey Rand Romas

Environmental Studies

Caleb Hawkins Sarah Shaw Saruul Damdinbal Godfrey Ogallo Bruce Underwood Aaron Coons

Jim Freeman

MaryAnn Borch Shaw Kabe Jeff Calhoun

Nate Schlater Tim Ferrell Kelly Caris Megan Liggett

Thank You!

