SOME LESSONS FOR NATIVE FOREST REHABILIATATION FROM LONG TERM MONITORING AT THREE SURFACE MINES IN AUSTRALIA

Neil Humphries

Reclamation Opportunities for a Sustainable Future ASMR National Meeting, Lexington KY. June 6th-11th, 2015

Blakemere Consultants Ltd

Location of Example Sites

Surface Coal Mine Mineral Sand Mine Bauxite Mine

Surface Coal Mine Yarraman, Queensland

Bauxite Mine >>> Banksiadale, Western Australia

Eucalyptus pilularis open forest

© ambg.gov.au

Eucalyptus – Corymbia – Angophora woodland

© agriculture.gove.au

Eucalyptus marginata – Corymbia calophylla tall open forest

LESSON 1 – Vegetation Composition

Trend in Vegetation Composition in Rehabilitated Forest

Main Tree and Shrub Species	Mineral Sand Mine	Surface Coal Mine	Bauxite Mine
Number Reference Stand Species	8	8	6
Number Reference Species in Rehabilitation	3	3	4
Number of Non- Reference species in Rehabilitation	3	5	7

LESSON 2 - Vegetation Structure

Comparative Structural Traits – Mineral Sand Rehabilitation

Target Community	Growth Form Class	Canopy Separation	Structural Formation Class
<i>Corymbia intermedia</i> open-forest	Trees 10-30m	Mid-dense	Open-forest
<i>Eucalyptus pilularis</i> woodland	Trees 10-30m	Sparse	Woodland
<i>Eucalytptus planchoniana – Banksia aemula</i> low open–forest	Trees <10m	Mid-dense	Low open-forest
Rehabilitation Age	Growth Form Class	Canopy Separation	Structural Formation Class
15 years	Shrubs 2–8m	Mid-dense to Dense	Open scrub / Closed scrub
20 Years	Shrubs 2–8m	Dense	Closed scrub

Comparative Structural Traits – Surface Coal Mine Rehabilitation

Target Community	Growth Form Class	Canopy Separation	Structural Formation Class
<i>Eucalyptus – creba Angophora</i> woodland	Trees 10-30m	Sparse	Woodland
<i>Eucalyptus creba – Corymbia spp – E. tereticornis</i> open forest	Trees 10–30m	Sparse to Mid-dense	Woodland-open forest
<i>Eucalyptus creba - E. moluccana</i> open forest	Trees 10–30m	Sparse to Mid-dense	Woodland-open forest
<i>Eucalyptus creba</i> woodland	Trees 10-30m	Sparse	Woodland
Rehabilitation Age	Growth Form Class	Canopy Separation	Structural Formation Class
16	Shrubs 2–8m	Mid-dense	Open scrub

Intervention by thinning on rehabilitated >>> bauxite mine

Less dense seeding promoting development of woodland/open forest on bauxite mine

Comparative Structural Traits – Bauxite Rehabilitation

Target	Growth Form	Canopy	Structural
Community	Class	Separation	Formation Class
<i>Eucalyptus marginata - Corymbia calophylla</i> forest	Trees >30m	Mid-dense to Dense	Tall open forest / Tall closed forest
Rehabilitation	Growth Form	Canopy	Structural
Age	Class	Separation	Formation Class
15 Years	Trees 10-30m	Sparse to Mid- dense	Woodland / Open forest

LESSON 3 – Functioning Ecosystem

Even-aged maturing rehabilitated stand >>> on bauxite mine

Conclusions

Lesson 1 – Faithful initial vegetation composition is crucial unless subsequent planned intervention

Lesson 2 – Structural composition is crucial in trajectory of developing and maturing forest and woodland requiring less dense establishing stands or planned intervention

Lesson 3 – Sustainable re-establishment of ecosystem functioning requires multi-aged stands which is a matter of time and ongoing intervention

Acknowledgements

Queensland University' Centre for Mined Land Rehabilitation kindly provided facilities and opportunities for RNH as a Visiting Academic.

ALCOA kindly provided the data for the rehabilitation at their Huntley Mine in Western Australia and Drs Andrew Grigg and Matt Daws of ALCOA are thanked for their constructive comment.

The opinions expressed are solely the author's