

Determination of Hydraulic Retention Time for Passive Treatment System Oxidative Unit Using Rhodamine

Leah Oxenford and Robert Nairn (Advisor)

ASMR 2016 Spokane, WA

Objectives

- Hydraulic Performance
 - 1. Time to Arrival, HRT, Concentration peak

Discrete vs Continuous Sampling

- 1. Method resolution / performance comparison
- 2. Consideration of measurement bias

Rhodamine-WT and YSI (6130)

Rhodamine Sensor Calibration

200 NST [Rhodamine] (ug/L) Rhodamine Dye □ 200 g/L □ 555nm emission Sensors y = 0.9561x + 1.3449 $R^2 = 0.9988$ □ 0.1-200 ug/L range \Box ±5% of value (error) 0 50 100 150 200 0 □ 0.1 ug/L LOD [Rhodamine] ug/L

Oxidative Unit = C1 + C2

C2 N/S C3 N/S

C4 N/S

C5 N/S

<mark>C6</mark>

Full System = C1 – C6

Design Retention Times

Cell(s)	Cell Description	Targeted Parameter	Design Retention Time
1	Preliminary Iron Oxidation and Sedimentation Cell	Fe, trace metals sorption	7.7 days
2(N/S)	Surface Flow Wetlands (pond- marsh-pond design for additional iron oxidation and sedimentation)	Fe, solids retention	3.4 days

Instrumentation and Monitoring

Continuous

- Optical rhodamine sensors deployed at each effluent Agri Drain.
- Sampling rate: One measurement every 15 min for 14 days.

Instrumentation and Monitoring

Discrete

- Optical rhodamine sensor used to measure autosampler collections
- Sampling rate: One sample collected every hour for 24 hours

Time and Volume Scaled Rhodamine Dosing

Flow (L/sec)	Seep A	Seep B	Seep D	Total Influent
Average (n = 6)	2.52 L/sec	4.41 L/sec	0.48 L/sec	7.41 L/sec
% Contribution	34%	59%	6%	100%
Dye Volume	900 mL	1800 mL	300 mL	3000 mL
Dye Mass Loading	180 g	360 g	60 g	600 g

- Flow rates were determined from six replicate measurements at each seep to calculate contribution.
- 3L of 200 g/L Rhodamine-WT was portioned based on percent contribution of each seep.
- All three rhodamine fractions were added simultaneously at all three seep locations.

C1Out Rhodamine Transport Profile

Time Since Dye Introduction to Cell 1 (Days)

AMD

Sources

C2N Out

C2S Out

1

to and the set

C1 Out O

C2Sout Rhodamine Transport Profile

Time Since Dye Introduction to Cell 1 (Days)

C2Nout Rhodamine Transport Profile

Cells 2 N and S Rhodamine Transport Profile Comparison

Transport Results Summary Cell 1 HRT is less than anticipated by design – Short Circuiting.

Cell 2N and Cell 2S are consistent in HRT indicating equivalent flow splitting.

Cell 2 HRT is greater than anticipated by design due to Cell 3 (VFBR) flow restriction during periods of rainfall.

Continuous Datasets Plagued by Particulate Interferences

Drawbacks to Continuous Approach

High sampling rate needed to compensate for particulate interferences without loss of data resolution.

High sampling rate decreases battery life.

Extensive data processing post collection.

Discrete Monitoring

Samples collected every hour for 24 hours.

 4 samples a day were filtered to removed suspended iron ppt. as an interference correction

C1OUT: Discrete Rhodamine Transport Profile Comparison 200 180 160 [Rhodamine] ug/l 140 120 100 Continuous 80 Discrete 60 40 20 8.00 10.00 12.00 14.00 2.00 6.00 -2.000.00 4.00

Time (Days)

C2Sout: Discrete Rhodamine Transport Profile Comparison

Discrete Sampling Results

- HRT consistent between sampling methods (continuous vs discrete)
- Daily calibration corrects for drift / signal attenuation concerns
- Monitor qualitative progress of dye and Report on daily progress in real time
- Mitigation of outliers due to autosampler

Drawbacks to Discrete Approach

- Autosampler failure can lead to gaps in dataset.
- Delayed measurements by up to 24 hours.

Commitment of personal for the duration of the project.

Summary

- Tracer studies of iron oxidation cells using rhodamine are possible despite expected sorption losses.
- Continuous or discrete sample collection methodologies may be used for quantitative analysis.
- One must consider equipment and team resource availability on a case by case basis.

Questions / Comments

C2Sout Rhodamine Transport Profile Comparison (2015 vs 2009)

