ASSESSMENT OF PERFORMANCE OF A PASSIVE TREATMENT SYSTEM OVER A TWENTY YEAR PERIOD IN EAST CENTRAL TENNESSEE

Terry Schmidt and Ken Milmine



Presented at the 2015 National Meeting of the American Society of Mining and Reclamation June 10, 2015.

 Terry Schmidt, Vice President, Engineering, Skelly And Loy, Harrisburg, PA.

 Ken Milmine, Senior Environmental Engineer, Cloud Peak Energy Resources, Gillette, WY.

### **Project Location**



#### Background

 Sequatchie Valley Coal Corporation (SVC) Extracted Sewanee coal 1978 to 1982 Area mine using dragline for overburden Mining area covered about 175 acres Following reclamation, AMD developed • Chemical treatment used for 10+ years - Over 100,000 gallons of NaOH (Caustic)

#### NPDES PERMITTING ASSESSMENT

INITIATED IN 1992 DETAILED STREAM SURVEY EVALUATION OF SITE HYDROLOGY REVIEW OF NPDES GUIDELINES - TECHNOLOGY BASED - REGULATORY BASED - WATER QUALITY BASED

#### NPDES PERMITTING ASSESSMENT

WORKED WITH TDEC AND ATTORNEYS
WHOLE EFFLUENT TOXICITY TESTS
NPDES PERMIT NEGOTIATED
pH, IRON, SETTLEABLE SOLIDS
ACUTE AND CRONIC TOXICITY TEST

#### **PRECONSTRUCTION ASSESSMENT**

LIMESTONE INCUBATION TESTS 1993 - PREDICTION OF 360 MG/L ALKALINITY PILOT SCALE TEST 1995 - TEST ALD OF 65 TONS CONSTRUCTED - VARIABLE FLOW CONDITIONS APPLIED - CONFIRMED ALKALINITY GENERATION - DOCUMENTED IN 1996 ASMR PAPER

#### **Conversion to Passive Treatment**

ALD and ponds installed in 1995
Designed for 200 GPM and 100 mg/L Fe
Other factors favorable (Al, DO, and site)
Initial average flow exceeded 300 GPM

# 1995 System ALD Discharge

WARD AND A TOP S

# 1995 System Basin A

# 1995 System – Basin A



### 1995 System Basin A Discharge

### 1995 System Basin B Inflow

### 1995 System Basin B Discharge

### 1995 System Results 120 GPM

Cell
ALD
Basin A
Basin B

AlkalinitypHIron3456.21381756.5421257.1<1</td>

#### 1995 System Results 335 GPM

Cell
ALD
Basin A
Basin B

AlkalinitypHIron3306.4972406.7521806.918

#### Passive Treatment System Enhancement

Wetlands were added in 1996
Planted with cattails

# 1996 Wetland 1 Added



# 1996 Wetland 2 Added

### 1995 System Results Post Wetland Construction

| - Cell                        | Alkalinity | рН    | Iron | Mn  |
|-------------------------------|------------|-------|------|-----|
| • ALD                         | 185        | 6.3   | 74   | 31  |
| Basin A                       | 170        | 6.2   | 24   | 33  |
| Basin B                       | 175        | 7.0   | 0.5  | 27  |
| Wetland A                     | 120        | 7.0   | 0.1  | 14  |
| Wetland B                     | 100        | 7.1   | 0.1  | 1.4 |
| <ul> <li>Documente</li> </ul> | ed in ASMR | Paper | 2001 |     |

#### Supplemental ALD Added 1999

Hydraulically Activated - GW elevation
Controlled by In-line water level structure
Redirects and treats peak flow
High flows split between systems
Extends life of system constructed 1995

# 1999 SYSTEM 2006 IMAGERY



© 2009 Google

© 2009 Europa Technologies

### 1999 ALD and Basins

### 1999 Basin 1-C-005



### 1999 ALD Basin 1-C-005 (cont.)

### 1999 Wetland

### Basin A Sludge Operation and Maintenance

Monitored at least 1 time per year Depth measurements taken at perimeter Estimated iron sludge volumes determined Average flow rates Average iron concentrations from ALD Average iron concentration discharging Basin Detailed measurements taken 2007

### Basin A Sludge Measurement 2007



### Basin A Sludge Measurement 2007

#### Sludge Measurements

Depths of 2 – 8 feet measured
Average depth of 3 feet - Basin A
Removal recommended

Capture for potential reuse
Restore storage capacity
Restore retention time

#### Sludge Capture System Schematic



# Sludge Dewatering System



### 2010 Photos

## 2010 Photos (Continued)

### 2010 Photos (Continued)



# 2011 PHOTOS



# 2011 PHOTOS



### Sludge Recycling

 All sludge removed from Basin A was recycled and trucked to Hoover Color Corporation. SVC covered the cost to ship the material, then Hoover compensated SVC for the material as it was consumed in their pigment process.

### 2010 - NEW NPDES PERMIT LIMITS BASED ON TMDL

TMDL completed in Rocky River
New NPDES limits planned
Proposed Manganese limits required new system enhancements

#### **2012 SYSTEM ENHANCEMENTS**

Elimination of one NPDES point
Combining 2009 and 2005 systems
Manganese reduction channels
Raising berms to increase freeboard
Settling Ponds
Solar powered aeration

### 2012 SYSTEM ENHANCEMENTS

SVC AREA #1

© 2009 Google

© 2009 Europa Technologies

### **Construction 2011**



### Construction 2011

# Settling Basin 2012



#### Basin & Limestone Channel 2012



### Beaverator 2012



# Solar Aerator and Baffles 2012

### **Open Limestone Channel 2012**



### Limestone Channel MN 2014



### 2012 MONITORING STATIONS

#### 2012 System Results Snapshot

ph Fet Fed Mnt MnD Cell 7.3 1.6 0.9 13 4.7 • 2009 Out LS Channel 8.1 ND ND ND ND 7.0 2.3 1.2 26 15 Basin A ND 5.2 7.2 ND 2.6 Basin B 7.6 0.1 ND 4.4 Wetland A 1.8 Wetland B 7.5 0.1 ND 0.5 0.1

### 2013 System Results Snapshot

pH FeT FeD MnT MnD Cell 2009 ALD 6.7 26 8.8 11 6.5 • 2009 Out 7.2 2.1 1.1 9.1 5.0 LS Channel 7.5 ND ND 0.2 0.2 7.5 1.2 0.6 4.1 2.1 Basin A 7.6 0.9 0.4 3.6 Basin B 1.9 7.8 0.7 0.4 3.6 Wetland A 2.0 Wetland B 7.7 0.2 ND 0.5 0.2







#### Conclusions

Passive treatment has proven an effective and reliable means of treatment for 20 years • NPDES permit limits may change and treatment strategy may require adjustment NPDES permit limits were continuously met throughout the 20 year period O&M including sludge removal is critical to maintaining effectiveness



and BULDING

19-10