The Potential of Biosolids and Other Amendments for Revegetation of Lead/Zinc Mine Tailings with Three Biomass Crops: Greenhouse Study

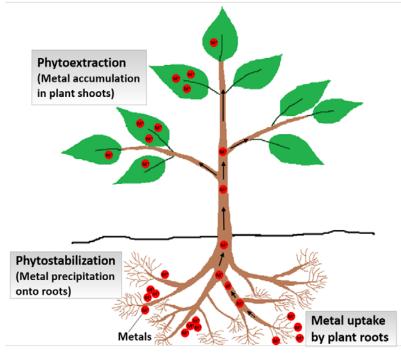
Mariam Al-Lami and Joel Burken

Civil, Architectural and Environmental Engineering, Missouri S&T, Rolla MO

June 6th, 2016

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Mine tailings are produced by mining and processing of economically-important minerals, and usually characterized by:
 - Poor soil structure.
 - Devoid of vegetation cover.
 - Heavy metal (HMs) content.



MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Tailings revegetation is required to achieve:
 - Land Reclamation.
 - Long-term stabilization.
 - Enhanced restoration.

- Tailings Phytoremediation involves two mechanisms:
- Phytostabilization:
 In-situ immobilization.
- Phytoextraction:
 Removal of HMs accumulated in plant tissue.

- Mine tailings are typically difficult to revegetate due to:
 - Poor soil structure.
 - Lack of essential nutrients.
 - Metal toxicity.

 Adding appropriate soil amendment should be considered when dealing with tailings revegetation.

MISSOURI

Rich Organic Amendments:

- Biosolids (BS):
 - BS contain up to 50% organic matter which serve as:
 - Carbon and nutrients source for microorganism.

 Binding agents for aggregate formation and stabilization.

Rich Organic Amendments:

- Biosolids (BS):
 - BS contain a full range of nutrients that are necessary for plant growth.
 - Increasing soil Cation Exchange Capacity (CEC).

Reduce HMs bioavailability by forming strong complexes.

Rich Organic Amendments:

• Biochar (BC):

- Increase water holding capacity.

- -Increase CEC.
- Decrease bioavailablity of HMs such as Cd, Pb, TI, and Zn.

Elevate C/N ratio, thus reduce nutrients leaching.

Other Amendments:

- Soil Secrets Products:
 - TerraPro supramolecular humus (HS)
 - Molecular compounds called organic acids and characterized by long lasting in soil.

- Protein crumblies (P)
 - large organic compounds made of amino acids and rich in nitrogen.

Other Amendments:

- Soil Secrets Products:
 - MycoMaxima (mycorrhizal fungi) (MF).
 - MF plays an important role of establishing a symbiotic relationship with plant roots.
 - -Increase water and nutrients uptake.

Goal and Objectives

 The primary goal is to establish a vegetative cover to achieve long-term stabilization of tailings.

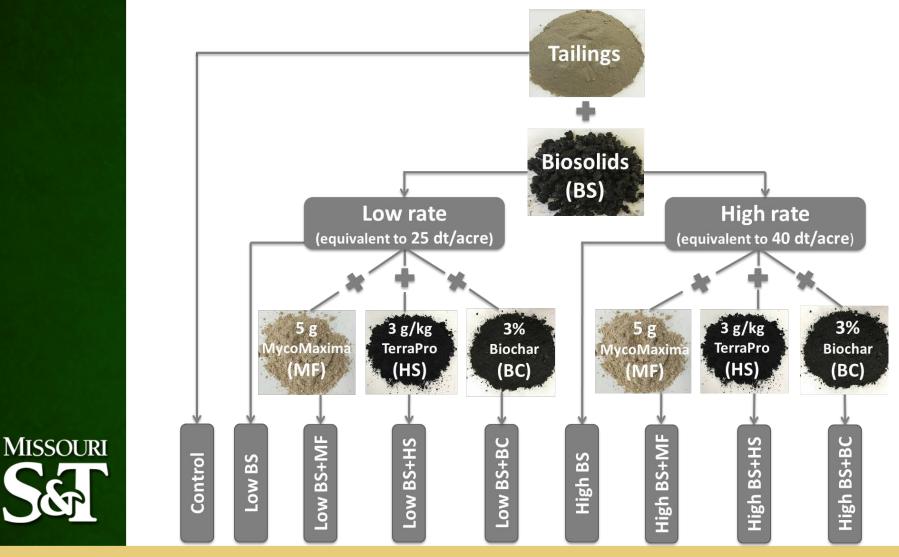
Objectives:

- Investigate the effectiveness of BS, BC, and other amendments for revegetation of lead mine tailings with biomass crops.
- Assess the impact of soil amendments on physicochemical and biological properties of tailings that are important to sustain a long-term vegetation cover.

MISSOURI

• Site Description:

-Mine Tailings Impoundment.


Located at latitude 37.7050462 and longitude - 91.1067999 Iron County, Viburnum MO, US.

• Physicochemical properties of tailings.

	Properties	Tailings
 – High pH. – Low CEC. – Very low organic matter. 	рН	7.6
	CEC meq/100g	3.6
	O.M. %	0.1
	Bray I P Ib/Ac	33
	Ca Ib/Ac	947
	Mg lb/Ac	273
	K lb/Ac	48
	As (mg/kg)	52.3
	Cd (mg/kg)	13.67
	Co (mg/kg)	39.25
	Cr (mg/kg)	11.49
	Cu (mg/kg)	0.999
	Pb (mg/kg)	3553
	Mo (mg/kg)	2.536
	Ni (mg/kg)	70.67

- Greenhouse pot experiment:
 - Treatment combinations:

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Why BS+BC combination?
 - BC application affects soil nitrogen dynamics.
 - BC adsorption of ammonia (NH₃)
 decreases NH₃ and NO₃ losses during BS application.

Nitrogen use efficiency by slow mineralization.

- Why BS+HS combination?
 - Supramolecular humic acids (HS):
 - Resist decay and characterized by long lasting in soil.
 - Affect HMs bioavailability by forming soluble or insoluble metal organic complexes.

 Known to increase micronutrients availability especially Fe in soil with high pH.

BS chemical composition

– Rich in N, P, K

Properties	Biosolids
Total solids %	3.7
Total organic nitrogen (mg/kg)	58300
Ammonia (mg/kg)	8220
Total Kjeldahl nitrogen (mg/kg)	66500
Nitrate (mg/kg)	69.1
Nitrite (mg/kg)	ND
Total phosphorus (mg/kg)	14200
K (mg/kg)	3140
Cd (mg/kg)	ND
Cr (mg/kg)	24.6
Cu (mg/kg)	522
Pb (mg/kg)	31.5
Mo (mg/kg)	ND
Ni (mg/kg)	22.4
Zn (mg/kg)	735
Hg (mg/kg)	2.1

• BC chemical composition

parameter	Biochar
рН	8.64
CEC	5.5
Nitrogen %	0.318
phosphorus %	0.123
Ca %	0.507
Mg %	0.155
К %	0.123
As (mg/L)	0.5
Cd (mg/L)	0.21
Co (mg/L)	1.381
Cr (mg/L)	9.22
Cu (mg/L)	0.418
Pb (mg/L)	23.25
Mo (mg/L)	0.829
Ni (mg/L)	59.57

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Three species:
 Willows

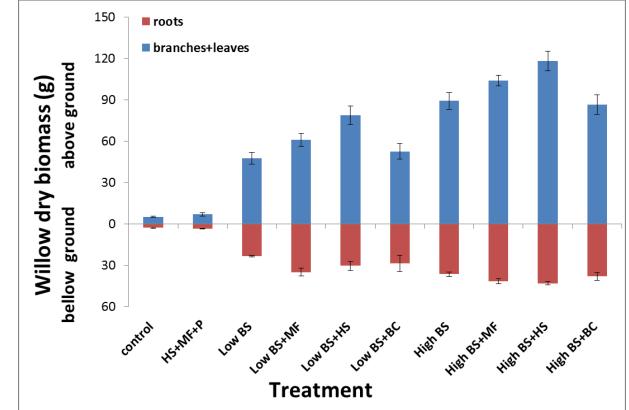
Poplars

Miscanthus

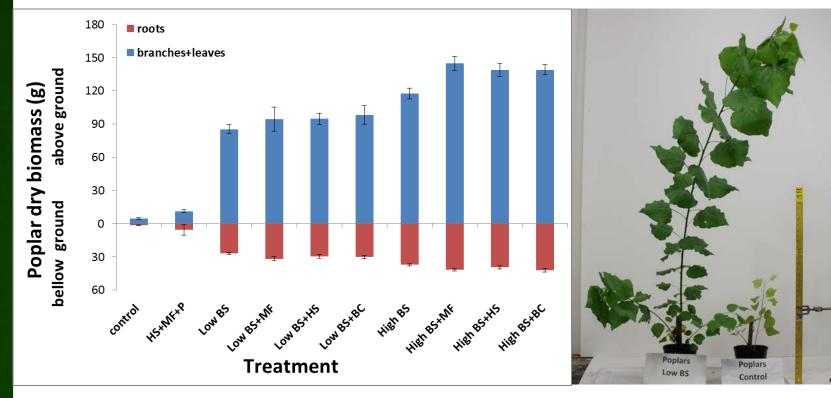
- Harvested after 6 month growth.
- Aboveground and root biomass were determined.
- Root segments were collected for mycorrhizal colonization estimation.
- Fresh bulk and rhizosphere soil samples for Soil dehydrogenase activity (DHA) measurement.

Shoot, root, and soil samples for HM and nutrient analysis.

• Willows:



 Willow leaf chlorosis in control treatment caused by nutrient deficiency.

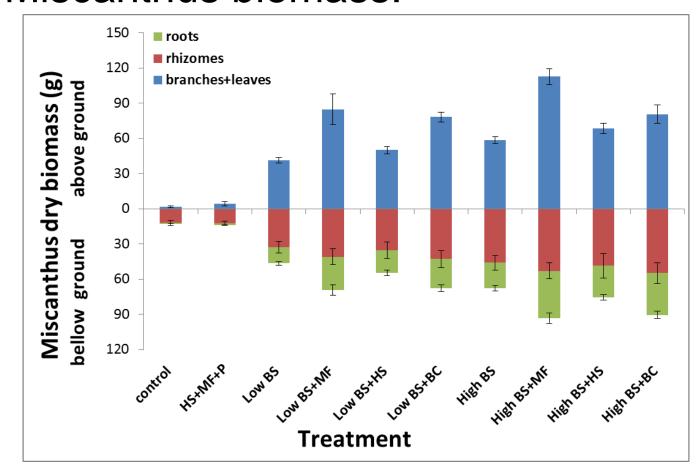

Willows biomass:

- Up to 9 and 17 fold increase in aboveground biomass with LowBS and HighBS, respectively.
- Up to **16** and **23** fold increase in aboveground biomass with **LowBS+HS** and **HighBS+HS**, respectively.

• Poplars biomass:

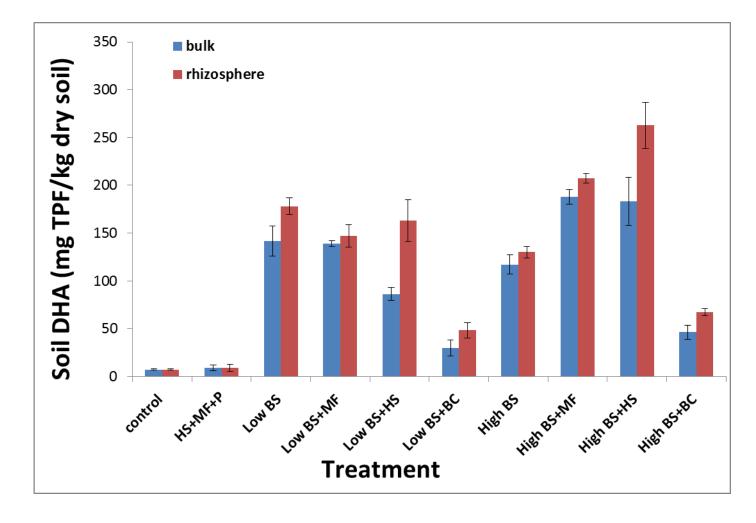
- Up to **19** and **26** fold increase in aboveground biomass with **LowBS** and **HighBS**, respectively.

• Miscanthus:

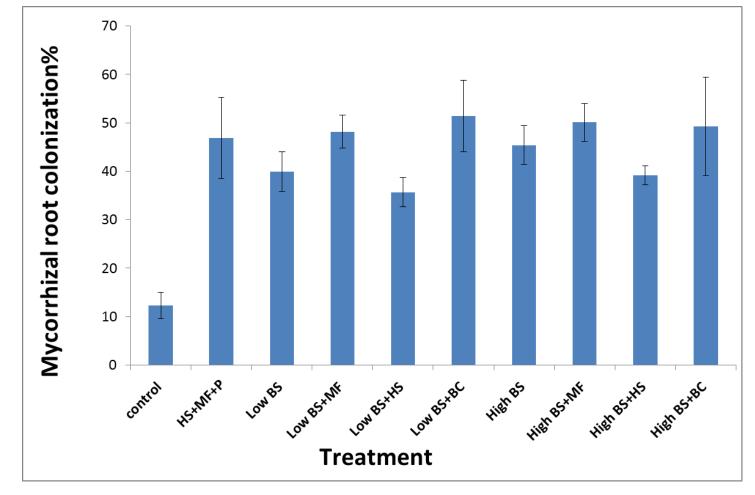

 New growth of miscanthus rhizomes induced by BS application.

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

MISSOURI

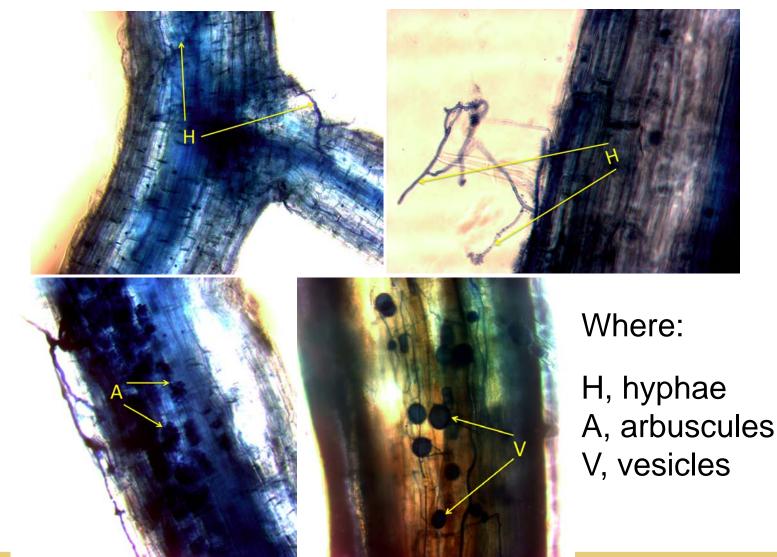

Results: Miscanthus biomass:

- **MF** addition significantly increased shoots biomass, up to **44** and **58** fold, when combined with **LowBS** and **HighBS**, respectively.


Results: Soil DHA: Willows

MISSOURI

 \bullet


 Mycorrhizal colonization on plant roots: willows

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

MISSOURI

Results:Mycorrhizal root colonization:

MISSOURI

T

Ongoing Analyses:

- Analyzing plant tissue for HMs and nutrients.
 - Leaves.
 - Roots.
- Analyzing soil samples for:
 - pH
 - Electrical conductivity (EC)
 - CEC
 - Organic matter (OM)
 - Total nitrogen (TN)
 - Total organic carbon (TOC)
 - HMs and nutrients

 Translocation factor (TF) will be calculated to assess the suitability of species for phytoextraction or phytostablization.

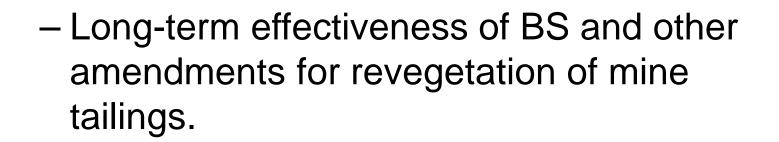
Conclusions:

• BS dramatically improved plant growth compared to un-amended tailings.

 Combinations of BS with other amendments further enhanced plant growth.

• BS significantly increased tailings microbial activity which is considered the potential indicator of soil quality.

Conclusions:


 Mycorrhizal colonization was observed on plants roots in all treatments, indicating that treatments stimulated growth of indigenous populations.

• BS application is recommended when dealing with mine tailings revegetation.

Future Work

- Pilot-scale trial to investigate:
 - The potential for lower application rate of BS with/without BC and MF for tailings revegetation under field conditions.
 - Intercropping with nitrogen fixing legumes.

Acknowledgements

DOF

- Dr. Joel Burken (Advisor)
- Chris Neaville
- John Millar
- Dr. Eva Gonzales

- Undergraduates:
 - Cory Pollpeter
 - Andrew Van Buren
 - Audrey Hofherr

Thank You Questions?

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

References

- Angelova, V. R.; Akova, V. I.; Artinova, N. S.; Ivanov, K. I., The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science 2013, 19 (5), 958-971
- Mendez, M. O.; Maier, R. M., Phytostabilization of mine tailings in arid and semiarid environments - An emerging remediation technology. *Environmental Health Perspectives* 2008, 116 (3), 278-283.
- Brown, S. L.; Henry, C. L.; Chaney, R.; Compton, H.; DeVolder, P. S., Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas. *Plant and Soil* 2003, 249 (1), 203-215.
- Stehouwer, R.; Day, R. L.; Macneal, K. E., Nutrient and trace element leaching following mine reclamation with biosolids. *Journal of Environmental Quality* **2006**, *35* (4), 1118-1126.
- Lu, Q.; He, Z. L.; Stoffella, P. J., Land application of biosolids in the USA: A review. *Applied and Environmental Soil Science* 2012, 2012.

