Column Study Treatability Testing for *In Situ* Remediation of Mining-Influenced Water

Nathan Smith, Nick Anton, David Reisman, Angela Frandsen, Roger Olsen (CDM Smith) Mike Sieczkowski, Donovan Smith (JRW Bioremediation)

June 2014

MIW Treatment Overview

- Treatment often performed using active methods (treatment plants) or passive/semi-passive methods (biochemical reactors [BCRs], wetlands, limestone drains)
 - Treatment plants often require continuous operation and maintenance
- Treatment is often limited to where drainage exits the mine, including: adits, seeps, or pumped
 - Typically requires multiple points for treatment, or complex piping/transport of the MIW
 - Can be limited by available space for passive / semi-passive locations in remote, mountainous areas

In Situ Application Overview

- In situ treatment involves generation of sulfate-reducing conditions within the abandoned mine – simulates a BCR
 - Treats the MIW at the source, rather than the discharge location
 - Utilizes the same geochemical principles as BCRs
 - Utilizes pH adjustment and organic amendment / substrate addition
 - Includes application to mine voids, shafts, and fractures within bedrock groundwater systems and PRB-type application for alluvial groundwater systems
 - Can also include source control methods such as mine bulkheading, grouting, and groundwater controls

2012 Study – Static Bench-Scale Tests

- Utilized batch reactors to simulate MIW present within a mine void
 - Cubitainers containing:
 - MIW
 - Site sediments
 - Manure (extract)
 - Inert material (sand/pea gravel)

- Roughly 2/3 of each container was freeboard MIW to simulate open voids
- pH adjustment (NaOH addition to pH 4.5 su)
- Added carbon substrate
- Test length 3 months with periodic sampling and injection

2012 Study – Electron Donors and Water Types

- Selected carbon sources that could be easily injected (either liquids or solids that could be slurried):
 - Ethanol
 ChitoRem[®] (no NaOH)
 - Methanol
 Antifreeze (ethylene glycol)
 - Beer

CDM Smith

- Three MIW types:
 - Two strongly acidic (pH <3), high metals (Al, As, Cd, Cu, Fe, Mn, Zn)
 - One near-neutral (pH 5.5), moderate metals (Cd, Pb, Zn)

2012 Study Test Results

- Best metal removal by ChitoRem[®]
- Ethylene glycol and ethanol also provided promising results
- Sulfide production mostly limited to ChitoRem[®] and ethanol

2013 Study – Phase 1

- Objective: Can we inject amendments into a simulated mine environment and generate necessary conditions to improve water quality?
- Column study comparing propylene glycol + NaOH, ChitoRem[®] (suspended in guar gel slurry), and control
- Columns packed with site waste rock and inert pea gravel
- Acidic MIW pumped through columns (pH approx 3; Sulfate: 16,000 mg/L; Iron: 1,400 mg/L; Nickel: 1.3 mg/L; Copper: 45 mg/L)
- Periodic injections of amendment through injection port in column

CDM

2013 Study – Phase 1 – Lessons Learned

- Gravity feed of guar slurry does not work
- Pressurization of guar slurry with inert gas required careful management
- Gravity feed of liquid substrates - PG and NaOH led to short-circuiting
- Gas generation led to draining of columns
- Injection through one small port means minimal distribution throughout column

2013 Study – Phase 1 - Results

Metal Removal Efficiency			
	PG + NaOH	ChitoRem®	Control
Aluminum	91%	24%	-7%
Arsenic	99%	58%	30%
Cadmium	85%	13%	-6%
Copper	94%	26%	-11%
Iron	100%	46%	30%
Zinc	87%	-2%	-12%
Sulfate	60%	19%	0%

- Column 1: pH 5.58; ORP 230.5 mV
- Column 2: pH 3.07; ORP 385.9 mV

2013 Study – Phase 2

- Objectives:
 - Can we treat this MIW using ChitoRem[®] alone?
 - Does pumping treated MIW into a simulated mine environment improve conditions in the mine?
- Column 1: ChitoRem[®] (15%) mixed into column packed with pea gravel (70%) and sand (15%)
- Column 2: Site waste rock (33%) with pea gravel (67%)
- Raw MIW in Columns 1 and 2 (2 2.5 liters pore volume)
- Once treated by Column 1, transfer treated water into Column 2

2013 Study – Phase 2

- Raw MIW recirculated in C1 and C2 until pH, ORP stabilized
- Once C1 stable, began transferring effluent to C2 in roughly 5-10% batches (by pore volume)
 - Provides a treated MIW containing alkalinity and soluble carbon, proteins, and SRB from ChitoRem[®]
 - Simulates gradual replacement of mine pool, either actively or due to flushing events

Column 1 - pH

Column 1 - ORP

Column 2 - pH

Column 2 - ORP

Acidity (mg/L)

Sulfate (mg/L)

Aluminum (ug/L)

Arsenic (ug/L)

Cadmium (ug/L)

Copper (ug/L)

Iron (ug/L)

Nickel (ug/L)

Zinc (ug/L)

Alkalinity (mg/L)

Sulfide (mg/L)

Conclusions

- Column 1 (ChitoRem[®]-treated)
 - Treated over 4 pore volumes of MIW
 - pH buffered to approximately 6 or higher; ORP negative
 - Considerable metal removal
 - Sulfide produced

Conclusions

- Column 2 (contained waste rock; received treated water)
 - Prior to treatment, metals and sulfate increased, pH decreased due to waste rock
 - Just over *one* pore volume replaced
 - pH buffered to approximately 5;
 ORP declined 300 mV
 - Substantial reduction in metals despite lack of direct treatment (Al, As, Cd, Cu, Fe, Zn)

Conclusions

- Emplacement of ChitoRem[®] is effective at buffering acidity; reducing metals
 - Emplaced in mine workings to intercept flow
 - Used in reactive barrier
 - Treat and reinject extracted groundwater
- Transfer of treated water buffered acidity and reduced metals in non-treated column
 - Suggests that passivation of waste rock may have occurred
 - Downgradient MIW has the potential to be treated as secondary effect of source zone treatment

Lessons Learned

- Use high-quality valves to prevent leaks
- Need vent hoses / pressure relief for gas generation
- Minimize tubing length connecting columns
- Use narrow columns to minimize short-circuiting
- In situ parameter measurement could potentially minimize stress associated with sample collection

Questions?

