

The Interstate Technology and Regulatory Council

Biochemical reactors for treating mining influenced water

Paul Eger, Global Minerals Engineering Cherri Baysinger, Missouri Health and Senior Services David Cates, Oklahoma DEQ Steve Hill, RegTech

Overview

Interstate Technology Regulatory Council (ITRC)

- What is it?
- Why does it exist?
- What does it do?
- Mine waste team
 - History
 - Mine Waste Guidance
- Biochemical Reactor guidance

Vision

To be the market-recognized "go-to" provider of guidance and training on **innovative** solutions to protect human health and the environment

Innovative Technologies

Or

The BIG Question?

Can I get a permit for thi/?

We're from the government and we'd like to help....

- Large cleanups required at Department of Defense and Energy sites
- Conventional technologies were too expensive
- Innovative approaches were needed
- Common problems at sites throughout the country
- Once proven a method to streamline acceptance was needed
 - "Don't reinvent the wheel"
- ITRC started in 1995

- Increase state acceptance of innovative technologies
 Stroomline state permitting processes
- Streamline state permitting processes

- Achieve better environmental protection through innovative technologies
- Identify and remove technical or regulatory barriers to the use of innovative technologies
- Build confidence about using innovative technologies

- Proposals developed and ranked by states
- Teams are formed to solve the priority problems
 - State led
 - Minimum of 5 states
 - Industry
 - Federal agencies
 - Academia
 - Public stakeholders

ITRC Process

Products

- Case studies
 - Applications
- Technology overview
 - Team evaluation
- Guidance document
 - Over 55 produced
 - Constructed Treatment Wetland
 - Phytotechnology
 - Permeable Reactive Barriers

interstate

CULATORY

NNO

ITRC Process

► Training

- Free Internet
 - Over 90,000 participants
- Classroom

Mine Waste

A BURNING ISSUE

Mine waste team started 2007

- White paper
- State issues
- Problem based guidance
 - identify and evaluate innovative & cost effective technologies
 - Solid mine waste
 - Mining influenced water
- First web based guidance

Web Advantages

Interactive

- Easy to navigate
- Graphics
 - Color images, photos, etc can be used for illustration

• Easier to update site as new information or case studies become available

Mine Waste Guidance

- Web-address: <u>www.itrcweb.org/miningwaste-guidance</u>
- Quick tool to identify appropriate technologies
 - Flow charts
 - Technology overview
 - Advantages/ limitations

Why Biochemical Reactors

Promising technology

- More information needed
- Case studies
- Technology guidance

Engineered treatment system that uses an organic substrate to drive microbial and chemical reactions to reduce concentration of metals, acidity, and sulfate in MIW (mining influenced water).

Table of Contents

1. Introduction

- 2. Determining the Applicability of a Biochemical Reactor
- 3. Testing Plans, Design, and Protocol
- 4. Design
- 5. Construction
- 6. System Start-up, Operation, and Maintenance
- 7. Technical and Regulatory Challenges and Solutions
- 8. Stakeholder Concerns and Issues
- 9. Tribal Concerns

10. References

How does a BCR work?

Guido Sarducci's 5 Minute University

INTRO TO BCRS

What Does a BCR Do?

Precipitate metals and metalloidsProduce circumneutral waters

How Does a BCR Do That?

Sulfate reducing bacteria

- Common bacteria
- Present in soil
- High concentrations in manure
- Remove sulfate by reducing it to sulfide
- Need oxygen free environment, sulfate, and an electron donor
 - Usually organic compound

Photo of sulfate reducing bacteria

Chemistry 101

Sulfate reacts with organic carbon

- Produce hydrogen sulfide and bicarbonate
- Hydrogen sulfide H₂S + reacts with metals

$$SO_4^{-2} + 2 CH_2O = H_2S + 2 HCO_3^{-1}$$

$$H_2S + M^{+2} = MS (solid) + 2H^{+2}$$

- Produce metal sulfide and hydrogen
- Limestone is often necessary
 - Increase the alkalinity
 - Consume hydrogen
 - Thus raise the pH

► If there is not enough M⁺²

• H_2S will be lost as a gas

 $2H^+ + 2HCO_3^{-1} = 2H_2CO_3$

 $2H^{+} + CaCO_{3}(solid) = Ca^{+2} + 2HCO_{3}^{-1}$

Determining Applicability of BCR

* INTERSTATE * ID TTRO CONCL * ABOLATIOSA *

Periodic Table of Treatable Elements 1 14 15 16 н 2 13 17 He Elements in Blue can 3 4 5 6 9 be treated in a BCR С Li Be в N 0 F Ne 12 13 14 15 16 17 11 Mg 3 11 12 Si P S CI Na 4 5 6 7 8 9 10 A Ar 21 35 19 20 22 23 24 25 26 27 28 29 30 31 32 34 K Ca Sc Ti V Cr Fe Co Ni Cu Zn Ga Ge As Se Br Kr Mn 42 44 48 37 38 39 40 41 43 45 46 47 49 50 51 52 53 Rb Y Zr Nb Mo Tc Rh Pd Ag Cd Sn Sb Sr Ru In Te I. Xe 72 73 74 75 76 77 78 79 80 55 56 57 81 82 83 84 85 La* Hf Cs w Hg TI Pb Bi Po Ba Ta Re Os Ir Pt Au At Rn 87 88 89 104 106 107 108 109 105 110 111 112 114 116 Ac~ Rf Sg Bh Fr Db Hs Mt Ra ---..... ------------

Figure courtesy of Jim J. Gusek, 2009

Actinide Series

Treatability Testing

What is needed for treatability testing?

- Site MIW
- Substrates

Hay

Wood Chips

Limestone

Proof of Principle Bench Pilot

Design Inputs

Detailed design inputs

- Characterization
 - MIW flow and quality
 - Average and extremes
 - Site
 - Workable area available
 - Detailed site map
 - Climate
 - Average
 - Extremes
 - Treatment goals
 - Pre-and post-treatment?

Performance Data

- Seasonal variability
- Loading range
- Residence time
- Substrate mixture
 - Thickness
 - Degradation rate
 - Metal removal efficiency

Does It Have To Be So Complex?

Goals

- Best Management Practices or National Pollution Discharge Elimination System
- Size

Operation, Monitoring, Maintenance

6. System Start-up, Operation, and Maintenance

- 6.1 System Start-up
- 6.2 Monitoring and Maintenance Activities
- 6.3 Maintenance
 - 6.3.1 Substrate Nutrient Change Out

- 6.3.2 Troubleshooting
- 6.4 Sampling Protocol

6.5 Contents of an Operation and Maintenance Plan

OUNCIL

INTERSTAT

Technical

Regulatory

- Permitting
- Water Quality Standards
- Disposal of Residual Materials

- Wetlands
- Stakeholder
 - Community, tribal concerns
 - Liability
 - Use of MIW as a Resource

- 1. BCRs are *viable alternatives* for treating MIW, even in remote areas
- 2. BCRs are *site-specific*
- 3. BCRs are not walk away systems

What does this guidance do for me?

Convenient resource when considering a BCR

- Overview
- ► Audience
 - Practitioners
 - Regulators
 - Clients

http://itrcweb.org/bcr-1/

Next training: September 23, 2014 2:00 PM - 4:15 PM EST

Biochemical Reactors

The perfect should not be the enemy of the good

- Low energy requirements
- May be low maintenance if designed properly
- Can be used in remote situations
- Removes metals
- Flexible and versatile
- Treats wide variety of MIW
- Will improve ecological function of receiving stream

- BCRs may not consistently meet strict water quality standards
- BCRs are not walk away systems
- Monitoring is required
- Maintenance may be needed periodically

Operation/Maintenance/Monitoring

Troubleshooting

Regulatory – Residuals and Wetlands

- Disposition of residual materials (for example, spent substrate)
- Wetlands
 - Mitigation
 - Attractive nuisance
 - Decreased BCR performance
- ITRC's Wetlands documents
 - Constructed Treatment Wetlands (WTLND-1, 2003)
 - Characterization, Design, Construction, and Monitoring of Mitigation Wetlands (WTLND-2, 2005)

Stakeholder Concerns

Community concerns

- Noise
- Attractive nuisance and safety
- Hydrogen sulfide odor
- Public outreach

BCR in Central City, PA. Note the houses in the background

Stakeholder Concerns (cont.)

- Clean Water Act Authority
- Volunteer groups
 - Watershed groups
 - Abandoned mine sites

Fran Coal Mine MIW

Liability Concerns

- Liability of Good Samaritans
- Disposal of spent substrate
- Effluent compliance
 - NPDES versus Infiltration or Recharge

The perfect should not be the enemy of the good

What does this do for me?

BCR Case Studies

- 1. Beaver Creek, OK
- 2. Mayer Ranch, OK
- 3. Haile Mine, SC
- 4. Ferris Haggerty, WY
- 5. Fran Coal Mine, PA
- 6. Brewer Mine, SC
- 7. West Fork, MO
- 8. Leviathan, CA
- 9. Wheal Jane, UK
- 10. Peerless Jenny, MT
- 11. Golinsky Mine, CA
- 12. Dankritz Mine, Germany
- 13. Copper Basin Mine, TN
- 14. Lady Leith Mine, MT
- 15. Luttrell, MT
- ITRC BCR-1, 2013: Appendix B

Not on map:

- 9 Cornwall, England
- 12 Sachsen, Germany

Problem based technology/regulatory guidance

- Multiple technologies solve problems
- Select appropriate technologies
- Optimize your approach
 - Clean up the source
 - Clean up the media

