Shortleaf Pine Pinus echinata

As a Reclamation Species on Former Mine Sites

2015 National Meeting of the American Society of Mining and Reclamation & the Appalachian Regional Reforestation Initiative Lexington, Kentucky June 10, 2015

Holly Campbell Extension Associate of Forest Resources Southern Regional Extension Forestry (SREF)

Mining in Appalachia

- 600,000 ha (1.5 million ac)
- SMCRA-1977
 - Erosion prevention
 - Wildlife habitat or grazing
- After bond release
 - Lands mostly unmanaged
 - Resulting vegetation
 - Moderate ecological value
 - Minimal/ no economic value
- ARRI created (2004)
 - Promotes Forestry Reclamation Approach (FRA)

Forestry Reclamation Approach on former mining site with Dr. James Burger Powell River Project, VA Tech

Pines & Reclaimed Mine Sites

- Pine as a pioneer species-assist later successional species
 - Decrease bulk density (Asby, 1989)
 - Increase soil nutrients
 - Organic matter
 - Ectomycorrhizae (Callaway, 1995)
 - Provide shade (Bauman, et al., 2012)
- Pine as long term component of hardwood stands
 - Wildlife benefits
 - Economic benefits

Pre-SMCRA Research- mixed results for shortleaf pine

- Eastern Tennessee site-spoil bank (Kring, 1967)-5 pines
 - Soils: low pH (4.1-5.3), P, and K
- S. Illinois reclamation site (Ashby & Baker, 1968)
 - Soils: High pH (6.0-8.1), low N
- Wilson Mtn strip mine reclamation, TN (1975)
 - Slope influences species dominance
 - North Aspect-Yellow poplar
 - South Aspect-Shortleaf pine

Post-SMCRA Research- shortleaf pine still struggles

Shortleaf Pine's Tolerance is Tested

- Conditions not suitable for shortleaf pine:
 - Compacted & poorly drained soils
 - High Ca/ pH soils
 - Very low soil nutrients
 - Excessively well-drained
 - Heavy Competition/ shade in early stages of growth

Why Shortleaf Pine?

Shortleaf Pine-Wide Range (Lawson, 1990)

- 1 of 4 major commercial species in SE
- 22+ state range (440,000 square miles)
- Wide precipitation range (40-60 in/yr)*
- Wide temperature range (48-70° F)*
- Wide elevation range (10-3,000 ft)

Shortleaf Pine-Suited to Diverse Sites

(Lawson, 1990)

- Adapted to variety of soils
 - Shallow to deep, well-drained
 - Sandy & gravelly clay-best
 - Tolerates dry and low-nutrient soils
 - Lower pH preferred
- Adapted to a variety of sites
 - S and W aspects
 - 600-2,500 ft elevation
- Occurs in 18 SAF forest cover types
- Growth Rate

Shortleaf Pine-Resilient (Lawson, 1990)

Forest Health

- Fire, drought, wind-throw, and ice tolerant
- Fusiform rust resistance
- Fire scar resistance
- Susceptible to Nantucket pine tip moth, annosum root rot (low/ no SPB susceptibility in mine range)

Shortleaf Pine-High Wood Quality

- 80-100 ft tall, 2-3 ft. diameter
- 4-7 growth rings/ inch
- Straight and low taper
- Small & confined knots
- Thin bark/ higher volume
- Sawtimber (lumber, plywood, pulpwood) & poles

175 year old shortleaf core-B. Pickens, NCFS

Shortleaf Pine-Wildlife (Masters, 2007)

- Seeds- food source for birds and squirrels
 - Preferred by Bobwhite quail
- Heartrot trees utilized by RCW
- Canopy provides habitat
 - Important winter protection in deciduous forests
- Savannah and Woodland management
 - Improve wildlife food and shelter
 - Habitat attracts: deer, turkey, quail, songbirds, and more

Shortleaf Pine on Reclaimed Mining Sites: Management Recommendations

- Site and soil selection
- Site Preparation
- Quality seedling selection
 - Containerized seedlings
 - Nursery list (website)
- Competition control
 - Low height herbaceous ground cover
 - Prescribed fire (generally used)
 - Every 3 years (regular disturbance)
 - 8-15 years (survival & recruitment in overstory)

Shortleaf Pine on Reclaimed Mining Sites: Management Recommendations

- Generally, 681 trees/ ac (even age stand)
- Increased wildlife & vegetation diversity
 - Savanna (30-45 sq. ft./ ac)
 - Woodland (45-70 sq. ft./ ac)
- Pasture & timber (silvopasture)
 - 100-400 trees/ ac
- Mixed stands (shortleaf-oak)
 - Fire management (compatible species)
 - Chestnut, white, black, post, chinkapin, bur, and white oak
 - Locust and hickory

McRee Anderson-TNC

Shortleaf-bluestem grass Ecosystem-USFS

Shortleaf Pine-Financial Assistance

Cost share and grant

- NRCS-EQIP
- State programs
- International Paper & National Fish and Wildlife Foundation (\$743,000)
 - Grant to restore Cumberland plateau forests (TN, KY)
 - Shortleaf forest

oundatio,

Addressing Shortleaf Decline

Forest History Society Images

Addressing Shortleaf Decline

- 53% reduction since 1980
- Greatest reduction east of the Mississippi river
- Why?
 - Land use change, species preference, forest health, fire suppression

Percent change of shortleaf (> 1" diameter) on FIA plots from 1980 to 2013. *FIA data-USFS*

Addressing Shortleaf Decline

2007-2015: Partnerships, research, workshops & symposia supporting shortleaf restoration

2013: Shortleaf Pine Initiative, Director Mike Black

2015: Shortleaf Restoration Plan & website

Future:

Research

Tree Improvement

Diverse management demonstration sites

Financial assistance

Southern Regional Extension Forestry

Shortleaf Pine - Conclusion

- Shortleaf not right for all sites
- Will need improved soil/ site conditions
- Can be planted with other desired timber species
- Resilient tree, but needs some management (competition control)
- Great timber quality and wildlife benefits
- Financial assistance to support its restoration

References

- Ashby, W. C., & Baker, M. B. 1968. Soil nutrients and tree growth under black locust and shortleaf pine overstories in strip-mine plantings. Journal of Forestry, 66, 1: 67-71.
- Ashby, W.C. 1989. Forests, in Restoration Ecology: A Synthetic Approach to Ecological Research, W.R. Jordan, M.E. Gilpin, J.D. Aber, Eds., pp.89-108, Cambridge University Press, Melbourne, Austrailia.
- Bauman, J.M., Keiffer, C.H., and Hiremath, S. 2012. Facilitation of American Chestneu (*Castanea dentate*) seedling establishment by *Pinus virginiana* in mine restoration. International Journal of Ecology. 2012: 12 pp.
- Callaway, R.M. 1995. Positive interactions among plants. Botanical Review. 61,4: 306-349.
- Lawson, Edwin R. "ShortleafPine." Silvics of North America: Volume 1, Conifers. Ed. Russell M. Burns and Barbara H. Honkala. Washington: U.S. Government Printing Office, 1990. 316-3 26.
- Kring, J.S. 1967. Spoil bank planting. Tennessee Farm and Home Science: Tennessee Agricultural Experiment Station. 64:6-8.
- Masters, R. E. 2007. The importance of shortleaf pine for wildlife and diversity in mixed oak-pine forests and in pine-grassland woodlands. In: Kabrick, John M.; Dey, Daniel C.; Gwaze, David, eds. Shortleaf pine restoration and ecology in the Ozarks: proceedings of a symposium; 2006 November 7-9; Springfield, MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station: 35-46.
- Torbert, J. L., Burger, J. A., Lien, J. N., & Schoenholtz, S. H. 1985. Results of a tree species trial on a recontoured surface mine in southwestern Virginia. Southern Journal of Applied Forestry, 9,3: 150-153.
- Walker, R.F., West, D.C., McLaughlin, S.B., & Amundsen, C.C. 1985. Performance of loblolly, Virginia, and shortleaf pine on a reclaimed surface mine as affected by Pisolithus tinctorius ectomycorrhizae and fertilization. United States. Shoulders, Eugene; [Editor] 1985.
 Proceedings of the Third Biennial Southern Silvicultural Research Conference. Gen. Tech. Rep. SO-54. New Orleans, LA: U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station. 589 p.

Thank you. Questions?

Holly Campbell

Extension Associate of Forest Resources

Southern Regional Extension Forestry

University of Georgia

Athens, Georgia

hcampbell@sref.info

Shortleaf Pine Initiative

<u>Draft website</u>: shortleaf.sref.info *Feedback is welcome!*

