Beneficial use of coal bed natural gas produced water through managed irrigation in the Powder River Basin of Wyoming

C. Driessen, K. Harvey, K. House

June 16, 2014

Outline

What is managed irrigation?

The managed irrigation process

Evaluation, design, permitting, operations, monitoring, and closure

Case study

Conclusions

What is Managed Irrigation?

Managed irrigation is defined as:

The application of established soil science, water chemistry, agronomic, and agricultural engineering principles to utilize CBNG produced water in a beneficial manner to grow forage for livestock and wildlife while protecting soil physical and chemical properties.

What is CBNG produced water?

In the Powder River Basin:

Groundwater pumped to the surface to recover CBNG Rich in naturally occurring sodium and bicarbonate minerals

Why is the water a concern?

Natural sodicity (and less so, salinity) reduces the suitability of the water for crop irrigation

Managed irrigation process

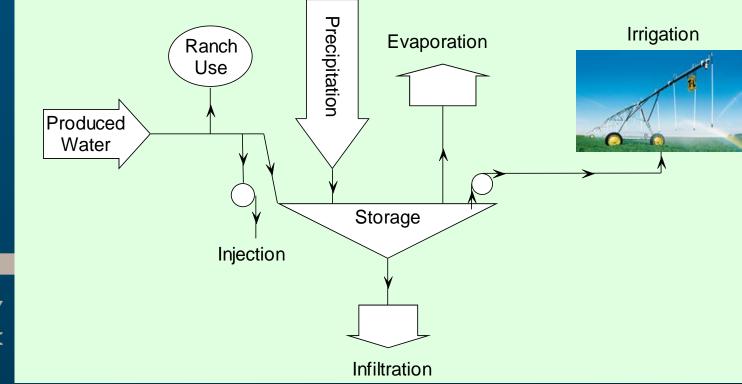
Evaluation

Design

Permitting

Operations

Monitoring

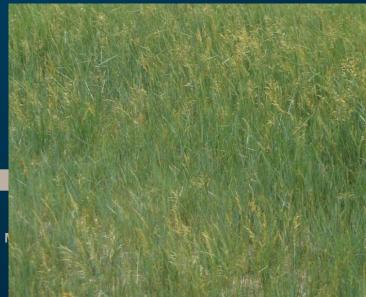

Closure

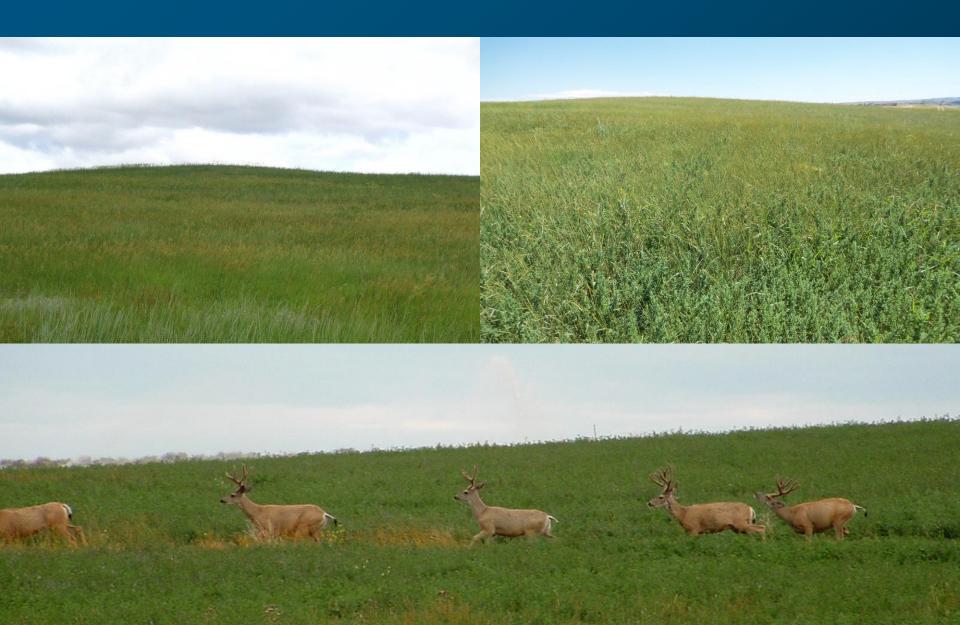
Phase 1: Irrigation Feasibility Evaluation

- Water quality suitability
- Soil/water conditioning prescription
- Water balance

- Site selection
- Permitting requirements
- Feasibility report

Phase 2: Irrigation Design and Permitting





Phase 3: Operations and Monitoring

Phase 4: Closure

Managed irrigation principles:

Work closely with landowner(s).

Select suitable sites and soils.

Understand the water balance.

Understand the chemistry of the water.

Condition soil and/or water to mitigate sodicity.

Select suitable crops.

Irrigate based on crop and leaching requirements.

Prevent runoff.

Monitor water, soil and vegetation.

Plan for site closure.

Managed Irrigation in the PRB

Managed Irrigation in the PRB

Program initiated in early 2000's

Evaluation, design, & permitting

Grew to nearly 90 fields covering 3,000 acres

Operations & monitoring

Recent decrease in production reduced need for water disposal

Closure

Case study

- Two center pivot fields near Sheridan, WY
- 49 acres each
- CBNG produced water first applied in 2001
- Final application of CBNG produced water in 2011
- Alfalfa fields from 2002-2009, sorghum in 2010, native grasses and alfalfa from 2011-present

Average water quality

Chloride

Fluoride

Sulfate

Cations

Calcium

Magnesium

Potassium

Sodium

Analyte	Units	Average Value	
рН	s.u. 8.8		
Electrical Conductivity (EC)	µmhos/cm	2,386	
Sodium Adsorption Ratio (SAR)		50	
Anions			
Bicarbonate	mg/L	1,282	

mg/L

mg/L

mg/L

mg/L

mg/L

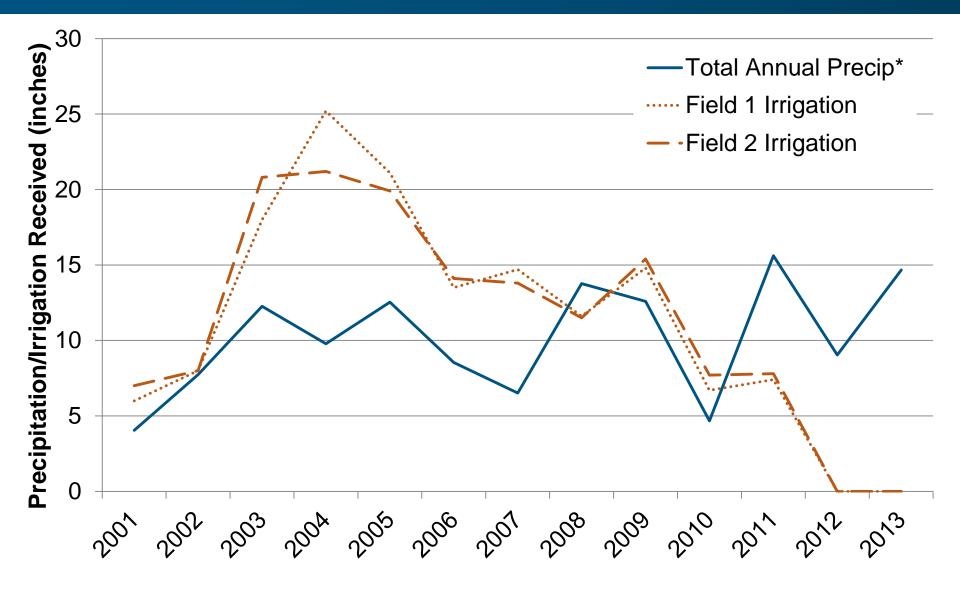
mg/L

mg/L

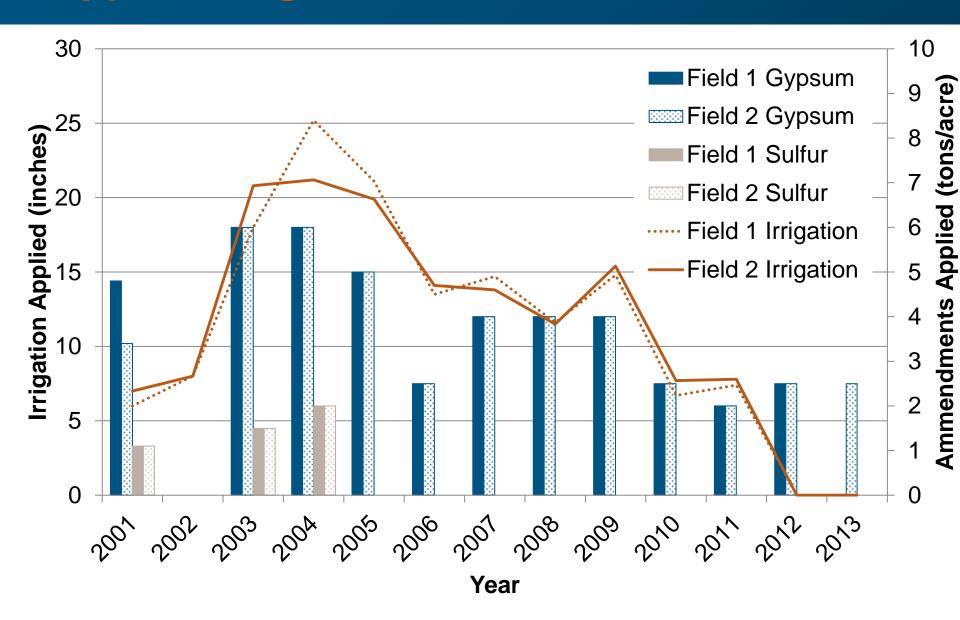
28

3.4

72


5.5

3.8


8.1

617

CBNG produced water applied

Applied irrigation and amendments

Closure requirements

- ✓ Apply up to two tons/acre gypsum after final irrigation event
- ✓ No more than a 25% reduction in infiltration from baseline
- ✓ Root zone salinity <3.0 dS/m and ESP < 8% -OR-</p>

Root zone salinity >3.0 dS/m and ESP < 15%

Site closure soil conditions

Doromotor	Fie	ld 1	Field 2		
Parameter	0-6"	6-12"	0-6"	6-12"	
рН	7.4	7.6	7.5	7.4	
EC (dS/m)	3.0	3.3	1.8	2.6	
SAR	5.1	6.6	2.3	7.6	
ESP (%)	5.7	6.9	2.6	10.4	
Saturation Percentage (%)	51.5	44.4	50.8	43.8	
Lime Content (%)	1.8	4.8	9.0	17.1	

Infiltration rates

Location	Soil Infiltration (inches/hour)			
	2002	2012		
Field 1	0.24	1.6		
Field 2	0.23	1.7		

Closure root zone salinity and sodicity

	Field 1				Field 2			
inches	EC (d	dS/m)	ESP (%)		EC (dS/m)		ESP (%)	
0 to 6	3.0		5.7		1.8		2.6	
6 to 12	3.3		6.9		2.6		10.4	
12 to 24	3.3	3.1	11.7	8.6	3.0	2.3	10.8	7.6
24 to 36	2.4		19.1		1.8		13.3	
36 to 60	5.7		9.2		2.2		11.2	

Closure requirements

- ✓ Apply up to two tons/acre gypsum after final irrigation event
- ✓ No more than a 25% reduction in infiltration from baseline
- ✓ Root zone salinity <3.0 dS/m and ESP < 8% -OR-</p>

Root zone salinity >3.0 dS/m and ESP < 15%

Conclusions

Over 370 million gallons of produced water applied over 10 years

Continually adjusted recommendations based on

actual soil data, water quality, and applied irrigation

2 years after final irrigation, both fields met final reclamation criteria

Beneficial Use of CBI In the Powder River B

