
GRAY SANDSTONE AS A TOPSOIL SUBSTITUTE

Lindsay Wilson-Kokes and Jeff Skousen West Virginia University Division of Plant and Soil Sciences

Coal Mining in Appalachia for decades Appalachia primarily forested

1950s dragline

Early mining methods were suitable for tree re-colonization

Good Substrate No Grading No Competing Vegetation

Some of these old mined sites have the

best tree growth!

Old uncompacted contour jobs...

Was the setting

... readily reverted back to trees!

1977 - Surface Mining Control and Reclamation Act (SMCRA)

Act was intended to: Enhance human safety Control erosion Improve water quality Return the land to AOC

Land was largely put back to pasture and hay land with soil compaction and heavy seeding rates to meet regulations SMCRA interpretation led to most post mined land being reclaimed to pasture and hayland Economic benefit from grazing and hay production

Reclamation evolved into large tracts of pasture

But if the land is not managed in a pasture or hayland use ..

Heavy groundcover and Compaction resulted in Grass and Invasive Shrub Wasteland

Unmanaged Hay land or Pasture Post Mining Land Use Good for What?

How long to go back to Forest?

Develop Forests on Mined Lands!

Benefits of reforestation include: wildlife habitat commercial wood production improve ecosystem diversity ecosystem services

ARRI! Reforestation Initiative Forestry Reclamation Approach

The 5 Steps of FRA

Create a suitable rooting medium...
 Loosely grade the rooting medium...
 Use compatible ground covers...
 Plant two types of trees...
 Use proper tree planting techniques.

Brown Sandstone

Gray Sandstone

Gray Plot

7 acres each

Brown Plots

RESULTS: Trees 2012 (8th Yr) average tree growth and survival

Treatment	Volume Index	Survival
	cm ³	%
1.5-m BC	3556 a	84
1.5-m BNC	5182 a	75
GC	449 b	83
GNC	309 b	31

Growth after 2 years - Brown

Growth after 2 years - Gray

Growth after 5 years - Brown

Growth after 5 years - Gray

Growth after 6 years - Brown

Growth after 6 years - Gray

WOF


Growth after 8 years - Brown

08/08/2012

Growth after 8 years - Gray

08/08/2012

RESULTS: Soil

*Means within row with the same letter are not significantly different at P < 0.05

RESEARCH OBJECTIVE

 Determine tree growth on <u>three gray sandstone</u> plots with varying compaction and compare them to tree growth on a brown sandstone plot.

Soil chemical properties.

STUDY SITE

B gaology.com

Demonstration Plots

Brown Sandstone

Gray Sandstone

200 ft

GCP

GSS

BSS

GRP

Gray Ripped

Gray Compacted

EXPERIMENTAL DESIGN

2005: Four 2.8-ha plots established. Brown sandstone (BSS) with native topsoil and compacted with a bulldozer. • Two compacted gray sandstone plots; one more than the other (GSS and GCP). • One gray sandstone plot that was compacted and then ripped (GRP).

Eleven 2-year-old tree seedlings planted.

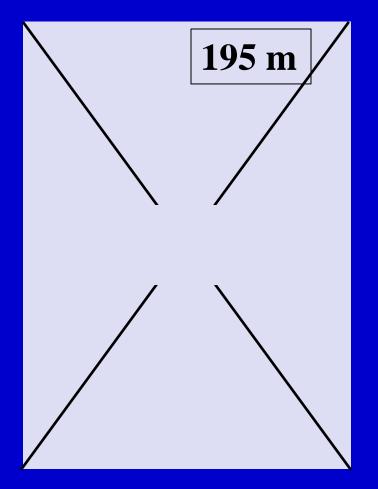
EXPERIMENTAL DESIGN

<u>2007:</u> Plots hydroseeded with tree compatible ground cover at a rate of 15.4 kg ha⁻¹.

Plots fertilized with 10-10-10 N-P₂O₅-K₂O at a rate of 440 kg ha⁻¹.

Tree Species Planted

Species	Total # Planted	% of total planted
Red Oak	3,400	22
White Oak	2,500	16
White Ash	2,500	16
Sugar Maple	1,500	10
Chestnut Oak	1,250	8
Tulip-Poplar	1,250	8
White Pine	1,250	8
Black Locust	465	3
Black Cherry	465	3
Redbud	465	3
Dogwood	465	3
Total	15,510	100 %


	EXPERIMENTAL DESIGN				
Hydroseeding rate by forage species					
	Rate of Application				
	Species	<u>Rate (kg/ha)</u>			
	Birdsfoot trefoil	11.0			
	Perennial ryegrass	2.2			
	Redtop	2.2			
	Total	15.4			

EXPERIMENTAL DESIGN

>Tree sampling method:

Two, 2.7-m
 wide by
 195-m long
 transects.

Species,
 height, and
 diameter
 recorded.

SOIL CHEMICAL ANALYSIS

Top 15 cm of the soil was collected
Five randomly selected points along each transect within each plot.

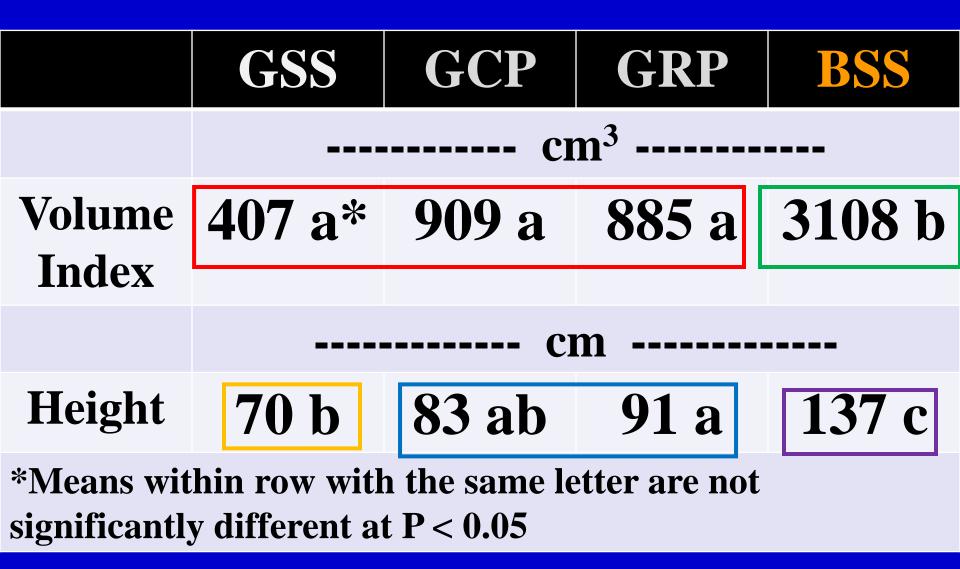
• pH, extractable nutrients, and electrical conductivity

STATISTICAL ANALYSIS

One-way ANOVA was used to compare...
tree growth by plot.
soil pH, EC, extractable nutrients, and % fines by plot.

• Tukey's HSD test used to determine significant difference at p<0.05 level.</p>

RESULTS: Soil				
	GSS	GCP	GRP	BSS
	su			
pН	7.9 a*	7.4 a	7.3 a	5.4 b
	dS m ⁻¹			
EC	0.05	0.12	0.08	0.04
	%			
Fines	39 a	30 a	76 b	73 b


*Means within row with the same letter are not significantly different at P < 0.05

Brown Sandstone

Gray Sandstone

RESULTS: Trees

GRP – 8th Year

BSS – 8th Year

White oak on GCP

White pine and white oak on GRP

White pine and white oak on GSS

White oak

GSS

CONCLUSIONS

- pH and EC not different among gray plots.

- **PHI on BSS lower than pH on GCP, GRP** and GSS.
- GRP had greater % fines than GCP and GSS.
- Tree growth on BSS higher than GRP, GCP and GSS
- Reinforce BSS is more suitable tree%????

ACKNOWLEDGMENTS

Paul Ziemkiewicz, WVU
Scott Eggerud, USDI OSM.
John McHale, Mitch Kalos, Jonathan Sanchez, and Jeff Andrews, Patriot Coal, Inc.
Past undergraduate and graduate students.

