Passive Treatment Systems for the Removal of Selenium: Selenium Removal Mechanisms with Biochemical Reactor Substrate

R.C. Thomas, J.J. Tudini, J.S. Bays, M.A. Girts, K.B. Jenkins, L.C. Roop, and T. Cook

CH2MHILL.

June 3 2013

Overview of Presentation

Outline

- Barrel-Study Overview
- Aqueous Results
- Volumetric/Aerial Loading Rates
- Substrate Se Removal
- Volatilization
- Substrate Se Speciation
- Modeling Calibration/Removal Rate Development
- Secondary Parameters
- Conclusions

http://www.namc.org/docs/00062756.PDF

CH2MHILL:

Case History (2011-2012) Two Concurrent BCR Pilot Studies for Coal Mine Drainage

Outlet A: 389 days Pumped Inflow

Outlet B: 180 days Gravity Inflow

Outlet 022: Variable Flow and Limited Flow Control Resulting in Variable Se Reduction

Outlet 033: Consistent Se Reduction Through Winter

Source: CH2MHILL (2012)

Focus on Winter Water Minimum Temperature 4°C

Avg Water Temp 8.2°C Avg Min Air Temp 4.2°C

Average Se Mass Removed Per Day – 022

Average Se Mass Removed Per Day – 033

Se Mass Removed vs Volumetric Loading

Reaction Fronts in BCR Substrates Over Time

Se Mass Removed vs Surface Aerial Loading

Barrel Selenium Profile

Barrel Selenium Profile

CH2MHILL:

Selenium Mass Balance vs Sediment Core: Gap Suggests Volatilization Loss

Vertical Distribution and Speciation of Selenium: Reduction, Sorption, Volatilization

Source: CH2MHILL (2012)

Vertical Distribution and Speciation of Selenium: Reduction, Sorption, Volatilization

Source: CH2MHILL (2012)

Model Rate Constant Calibration

- Empirical data from barrel studies used to calibrate treatment rates in the development of a sizing model for a full-scale treatment system
- General terms of mass conservation for a plug flow system are used while maintaining the first order model as the basis
- Empirical data was modeled using first order area-based treatment wetland model of Kadlec & Knight (1996) & Kadlec & Wallace (2009)
- Model estimates the potential BCR effluent concentration for a given flow rate and concentration for a given BCR area, as adjusted for temperature

$$J = k(Ci - Ce)$$

where:

- J = zero-order contaminant removal rate [g/m²/yr])
- k = first-order, area-based rate constant (m/yr)
- C_i = influent concentration (g/m³)
- $C_{\rm e}$ = effluent concentration (g/m³)

First-order Area-based Treatment Model

First-order treatment model was expanded to the P-k-C* model, which is solved by relating: 1) hydraulic loading, 2) removal rate, 3) concentration terms, and 4) hydraulic mixing

Rate Constant vs Hydraulic Loading Rate

First-Order, Area-Based Tanks-in Series Rate Constant Modeling Results

- Passive Treatment Systems rarely operate as plug-flow reactors
 - Heterogeneous substrate, preferential flow
- Passive Treatment Systems are better characterized hydraulically as a series of well-mixed tanks (3 – 6 in series for VFW)
- Barrel-study data was configured in a three tank series using the P-k-C* model to assess the variable hydraulic characteristics on overall performance

	1st-order, Area Based, Rate Constants (m/y)			
Barrel	Outlet 022 ^a	Outlet 033 ^ª	Outlet 033 ^b	Outlet 033 ^c
А	1,379	1,498	675	675
В	1,744	1,671	1,177	1,177
С	1,246	1,180	_	_
D	1,547	1,115	_	_

First-Order, Area-Based Tanks-in Series Rate Constant Modeling Results

Note: Target effluent concentration was set at 4 µg/L.

^a Influent temperatures monitored during the summer and fall operations used in model (θ set at 1).

^b Influent temperatures monitored during the winter operations used in model (10.5°C) (θ determined to be 0.95).

^c Influent temperature set at 9°C in model (θ determined to be 0.96).

Secondary Parameters (Salts & Labile C): Conductivity, TDS, Alkalinity, BOD

Secondary Parameters: Nutrients and Color

Secondary Parameters: Metals

Conclusions

- Selenium was effectively reduced by ~90% on average in all barrels.
- Selenium removal was effective at all HRTs tested (12 to 24 hours).
- Cold temperatures (below freezing) did not affect selenium removal rates significantly, and effluent selenium concentrations remained below discharge limits following startup.
- The organic substrates tested could generate secondary byproducts:
 - short-term increase in conductivity from the flushing of excess salts from the substrate during startup
 - elevated oxygen demand from excess labile carbon in the effluent
 - suspended solids (mainly fine particulate organic matter)
 - excess nutrients in the substrate mixture
 - release of regulated metals such as iron and manganese, which might also occur in small amounts in the substrate mixture.

Conclusions

Se removal occurs at the influent water-substrate interface

- consistent with first-order processes
- extent of selenium distribution within the substrate is dependent on the selenium load.
- Substrate Se speciation indicates:
 - dominant mechanism is reduction of selenate to reduced forms of selenium that are weakly adsorbed to the substrate during early stages of selenium removal
 - approximately >50% weakly adsorbed Se attributable to selenite
 - Highly immobile elemental selenium or selenosulfide account for about a quarter of the total selenium retained
 - very little metal selenide was found.
- Both substrate coring and water-balance mass-balance evaluation methods show selenium retention
 - higher water balance method suggests a higher overall selenium retention than that observed in the substrate cores, suggesting loss to volatilization.
- Barrel media type B appeared to balance high treatment performance with moderate production of byproducts.
- Selenium treatment BCRs have been shown to treat mine site discharges effectively in order to achieve selenium compliance limits.

- Thanks to Alpha Natural Resources
- Thanks to supporting engineering and science staff at CH2M HILL

Questions

