Use of a Dispersed Alkaline Substrate and Limestone Beds to Treat Acid Mine Drainage at Soudan Mine, MN

Kristen Dieterman Candace Kairies-Beatty, Paul Eger

#### Soudan Mine

#### OMN's oldest & deepest iron mine

#### OLocated 20 miles SW of Ely, MN



### Soudan Mine: Geology

- Ely Greenstone
  - O Soudan Iron Formation
    - Massive, exceptionally hard, bluish-grey hematite
    - Over 60% iron
    - OSteeply inclined folds and belts
  - Quartz, chlorite, apatite, chalcopyrite, pyrite, and other copper minerals



## Soudan Mine: History

#### O Mining

- Open pit 1884
- O Underground 1892
- O 27 levels
- O 2,341 ft deep
- Post-Mining
  - O Donated to State of MN 1964
  - O State Park
    - O Historical landmark
    - O Educational tours
    - O Physics lab



www.dnr.state.mn.us

#### Soudan Mine: Water

- Enters mine through open pits & fractures
- O Pumped to surface
  - O 60 gal/min
- O Discharge
  - O Permit
  - Copper 0.017 mg/L
    Cobalt 0.004 mg/L
    Soudan Annual Average
    Copper 0.083-0.5 mg/L
    Cobalt 0.006-0.026 mg/L
    pH ~7.5





#### Soudan Mine: Water Treatment

 Siemens ion exchange system treats entire discharge

OCation resin

OSuspended solids prematurely plug resin

OIncreases cost and maintenance



http://www.waterworld.com/articles/iww/print/volume-10/issue-6/feature-editorial/historic-mine-uses-ion-exchange-for-coppercobalt-removal.html

#### Soudan Mine: Goal

- Treat individual levels in mine
- Meet discharge permit standards
- Eliminate surface treatment



#### **Soudan Mine: Existing**

#### • Level 10N discharge

- **O** pH 4-4.5
- O Copper ~ 10 mg/L
- Major copper source
- O Cobalt ~ 0.2 mg/L
- O Treatment system
  - Same resin and design as surface system



### Soudan Mine: New

- Level 21W discharge
  - O pH 2.5
  - O Iron 50 mg/L
  - O Manganese 0.8 mg/L
  - O Copper 0.19 mg/L
  - O Cobalt 0.18 mg/L
- O Treatment system
  - O Inexpensive
  - O Easily maintained
  - Housed within the mine
  - No anaerobic conditions





Level 21W

Second largest cobalt source
 ~ 40% of cobalt



### Soudan Mine: Approach

#### • Bench scale experiments

- Dispersed Alkaline
   Substrate/Limestone Bed
- O Neutralize pH
- Precipitate metals
- Meet discharge permit standards

Copper 0.017 mg/LCobalt 0.004 mg/L



O Column O Down flow O8 inch diameter • Cedar wood chips coated with limestone sand • Flow rate allows for 24 hour residence time



Column

• Raise pH to 4-5 or higher

O Precipitate

Olron

O Coprecipitate/adsorb

OCopper



Limestone Bed
Horizontal Flow
Gravel sized
Flow rate allows for 24 hour residence time



- C Limestone Bed
  - Raise pH to 7-8
  - Precipitate
    - Manganese
  - O Coprecipitate/adsorb
    - O Cobalt





#### **Results: Anticipated**

- O Column
  - Raise pH 4-5 or higher
  - O Precipitate
    - O Iron
  - O Coprecipitate/adsorb
    - O Copper
- Limestone Bed
  - O Raise pH 7-8
  - Precipitate
    - O Manganese
  - O Coprecipitate/adsorb
    - O Cobalt

#### рН 6.5-8.5

## Cu 0.017 mg/L

## Co 0.004 mg/L

#### **Results: pH**



#### **Results: Iron**



Influent average: 50 mg/L

#### **Results: Copper**



Influent average: 180 ug/L

Permit: 17 ug/L

#### **Results: Manganese**



#### **Results: Cobalt**



Permit: 4 ug/L

# What is wrong with this picture?

### **Problem!**

# ONo Manganese removalOCedar?



#### O Column

- O Down flow
- 8 inch diameter
- Aspen wood chips coated with limestone sand
- Flow rate allows for 24 hour residence time



## Results

|                     | Influent | Column<br>effluent | Limestone<br>Bed effluent |
|---------------------|----------|--------------------|---------------------------|
| рН                  | 2.5      | 6.8                | 7.4                       |
| Iron (mg/L)         | 38       | 0.8                | 0.8                       |
| Copper<br>(ug/L)    | 97       | 36                 | 26                        |
| Manganese<br>(mg/L) | 0.8      | 1.4                | 2.3                       |
| Cobalt(ug/L)        | 138      | 76                 | 39                        |

Any other great ideas?





## Hail Mary Option

Pretreat limestone with Potassium Permanganate
 100 mg/L solution
 Circulate through bed for 2 weeks

#### Manganese vs Time



#### Cobalt vs. Time



#### Conclusion

• Success

- O Column
  - Effectively raised pH
  - Precipitated iron
  - O Coprecipitated/adsorbed copper
- O Limestone Bed
  - Effectively raised pH
- O Pretreated Limestone Bed
  - Precipitated manganese
  - Coprecipitated/adsorbed cobalt



#### Puzzlements

#### O Column

- O Mechanism of cobalt removal
- O Adsorption/coprecipitation
- O Increase potential as pH increases
- O Anaerobic conditions?
- O Limestone Bed
  - O Lack of manganese removal
  - O Almost 1 year of testing



#### LEVEL NO. 27 2341 FEET BELOW THE SURFACE 689 FEET BELOW SEA LEVEL

# Questions?

I O SI



## pH adjustment test

| Parameter | initial | Step 1 | Step 2 |
|-----------|---------|--------|--------|
| рН        | 2.5     | 4.2    | 5.6    |
| Fe        | 57.3    | 9.6    | 4.0    |
| AI        | 12.0    | 7.3    | 0.08   |
| Cu        | 0.05    | 0.08   | <0.008 |
| Со        | 0.16    | 0.15   | 0.13   |

#### All metals in mg/l