Passive Treatment of Sulfate from Mine-Influenced Water

B.T. Thomas/CH2M Jim Bays/CH2M

Passive Treatment Overview

- Biochemical reactor (BCR) units are common in PTS design, especially where sulfate reduction is desired as the removal mechanism for trace metals.
- The BCR media is designed to support high levels of anaerobic microbial activity over an extended timeframe (>10 years)
- Metal removal is through both biological and abiotic removal mechanisms (mainly sulfide precipitation)
- Downstream APC units are typically installed to re-oxidize the BCR effluent and remove any excess sulfide before discharge to the environment.

Introduction

- Biochemical Reactors designed around sulfate reduction
 - 300 mmole sulfate reduced per cubic meter of substrate per day
- Focused on metal removal; not sulfate removal
- High rates of sulfate reduction achieved through BCR
- Net change in sulfate through entire PTS is generally low due to APC; not enough metals in solution to precipitate all of the sulfide generated

Sulfide Precipitation Cell (SPC)

- Metal deficiency in BCR influent
- Require "capture" metal to retain sulfide as solid precipitate (FeS)
- Creates "consumable" substrate; shorter predicted life than BCR
- Employ separate process unit to isolate potential maintenance issues
- Clean sand matrix supporting low concentrations of distributed iron media to minimize cementation
- downflow BCR hydrologically connected to upflow SPC reactor to prevent oxidation of sulfide between units

Pilot Study

Background

- Former mine site with WRD seepage
 - Sulfate concentration 1,000 1,600 mg/L
 - Iron concentration 75 135 mg/L
 - Low-level zinc (<1 mg/L)
 - Predicted flow rate (post capping) ~10 gpm
- Treatment goal of 250 500 mg/L sulfate
- Pilot-testing multi-stage seep capture system
 - BCR/SPC/APC

Experimental Design

- Six (6) test arrays
 - $\quad \text{BCR} \rightarrow \text{SPC} \rightarrow \text{APC1} \rightarrow \text{APC2}$
- 3 (slight) variations of BCR media recipe
 - "Typical"
 - "Labile" (begasse-based)
 - "Enhanced" (carbon feed)
- Evaluated multiple HRTs
 - 3, 6, 9, 12-day HRT
- Tested five SPC media substrates
 - ZVI
 - waste rock from a magnetite mine in Missouri
 - low-grade magnetite ore from Utah
 - iron carbonate (siderite) from a mine in east Texas
 - magnetite fines from the Alabama Pigments Company.

Effluent Tank with sump pump

Substrate Recipes

- BCR
 - "Typical" (woodchips, sawdust, hay, limestone sand, SMC, peat)
 - "Labile" (typical-BCR substrate interlayered with Hay and SCB)
 - "Enhanced" (typical-BCR fed various forms of lactate/lactic acid)
- SPC
 - Two phases of testing
 - "HRT Testing" in 30 gallon drums
 - "Optimization Testing" in 17 gallon drums

Phase	1A	1B	2A	2B	3A	3B
HRT Testing	MO Mansand (33% Mag: 66% Sand)	AL Pigments (40% Mag: 60% sand	MO Mansand (50% Mag: 50% Sand)	100% Siderite	33% ZVI:66% Sand	Comstock Lean Ore (40% Mag: 60% Sand)
Optimization Testing	15% ZVI: 85% Sand	15% ZVI: 75% Sand: 10% hay/bagasse	90% ZVI: 10% hay/bagasse	100% Siderite	100% MO Mag Mansand	100% MO Mag Mansand

Hydraulic Residence Time

Results - BCR

% Sulfate removal in BCR barrels

Percent Sulfate Reduced versus HRT

Volumetric Reduction Rate versus HRT

Comparison of Substrate Recipe Performance

Results - SPC

BCR Sulfide - Optimization Testing

SPC Sulfide - HRT Testing

SPC Sulfide - Optimization Testing

ch2m

© 2017 CH2M

SPC Average % Reduction in Sulfate vs HRT - Optimization

(July - Oct)

Results – Substrate Autopsy

Missouri Mag Mansand

Siderite

Thank You

