Tree and Ground Cover Establishment over Seven Years as Affected by Seeding and Fertilization Rate Jennifer Franklin and David Buckley

Presented at ASMR Oklahoma City, June 16, 2014

Challenges and questions

- Simultaneous establishment of trees and herbaceous cover is needed but challenging (Vogul, 1980).
- Dense, fast-growing
 herbaceous ground covers can
 reduce tree seedling growth
 and survival.
- Forestry reclamation approach (ARRI) recommends planting tree-compatible ground cover (Burger et al. 2005)

Herbaceous density

Challenges and questions

- Rapid development of herbaceous cover needed to prevent rill development
- Some states require >80% cover
- Barriers to use of native species: expense and risk

Research questions

1. Can we obtain an adequate vegetative cover of native grasses using reduced seeding rates?

2. How do ground cover, trees and fertility interact?⁵⁰ If low rates of N are applied, can vegetation establish?

If high rates of N are applied, does the resulting herbaceous growth negatively impact tree seedlings?

Study site

So Zeb Mountain, TN
Precip. 135 cm/yr
Elev. 610m (2000')
Slopes 20-40%
Sandstone/shale

 So 3 plots 100x30m
 Each divided into 9 sub-plots

Methods

3 x 3 factorial with 3 replicates Seeded with native warmseason grasses and legumes at 59.4 kg/ha 29.7 kg/ha 5.9 kg/ha Fertilized with 10:20:20 448 kg/ha at 224 kg/ha 0 kg/ha

Planted white oak (Quercus alba) scarlet oak (Quercus coccinea) black walnut (Juglans nigra) mockernut hickory (Carya alba) Randomly on a 2 x 2 m spacing

Fall 2007 – 2 growing seasons

Vegetative cover on plot 1. All plots showed increasing cover with fertilization rate.

Fall 2007 – 2 growing seasons

No treatment effects on either survival or growth of planted trees.

Vegetative development

2006

2008

2013

Herbaceous cover 87-100%

Survival from planting (2006) - 2013

Effect of fertilization rate

Root collar diameter- 2013

Survival from planting (2006) - 2013

Effect of seeding rate - not significant

Vegetative development

low seed no fert.

med seed med fert.

high seed high fert

Conclusion

- Fertilization increased cover of switchgrass but decreased the cover of Indian grass
- There was no significant influence of seeding rate or fertilization rate on total vegetative cover, or on the proportions of grass, legumes, and forbs present.
- So Conclusion: On steep reclaimed coal mines in Tennessee, the establishment of native trees and ground cover may be successful using reduced rates of seed and fertilizer application.

Acknowledgements

Many thanks to:

OSM Knoxville Field Office National Coal Students field assistants: Stuart Wilson, John Johnson, Cal McKinney

