Regeneration dynamics of seedling origin aspen: Managing for resiliency in forest restoration

American Society of Mining and Reclamation April 12, 2017 Carolyn King & Simon Landhäusser Renewable Resources, University of Alberta cking1@ualberta.ca

Clonal dynamics

Shared root systems – one genetic individual

Introduction

Clonal origin

High cutting Bell et al 1999; Mulak et al 2006 Low cutting

Introduction

6

http://www.borealscience.org/wp-content/uploads/2012/06/map-boreal-disturbances1.jpg

Seedling origin

Individual root systems

Canopy conditions

Seedling origin

Individual root systems

Growth as suckers or stump sprouts⁹

Research Site

Ellerslie Research Station, planted aspen sites

19 m

Large Diameter Stand 30 m

Small Diameter Stand 17 m

25 m

Research Site

Research Questions

- 1. Does height at which a tree is cut affect the number of suckers and stump sprouts produced?
 - Does the planting density of a stand have a further effect on this?
- 2. Does the production of stump sprouts inhibit the production of suckers?
- 3. How does a seedling origin stand respond to clear-cutting?
- 4. How do root characteristics differ between planted stands, and how do they influence suckering?

Treatments (2015, RQ 1,2)

Control – Severed Roots – High cut (25cm) – Low cut (0 cm) (10 trees per treatment per stand = 80 trees)

August 2015

- Roots from treatment trees excavated and collected
- Suckers and stump sprouts collected if attached to excavated roots

Results

RQ1a. Does cut height affect the number of suckers produced? Does stand diameter affect this?

RQ1b. Does cut height affect the number of stump sprouts produced? Does stand diameter affect this?

RQ2. Does the production of stump sprouts inhibit the production of suckers?

RQ3. How does a seedling origin stand respond to clear-cutting? (second growing season)

Large Diameter (LD) 10,000 stem ha⁻¹→ 40,000 suckers → 3000 stump sprouts ha⁻¹

Small Diameter (LD) 29,000 stems ha⁻¹→ 26,000 suckers → 15,225 stump sprouts ha⁻¹ **Results**

RQ4. Do root characteristics differ between stands of different densities?

RQ4. Do root characteristics differ between stands of different densities?

	Root system weight kg ha ⁻¹	Root system length m ha ⁻¹
Large Diameter Stand	5700	81856
Small Diameter Stand	3639	130743

RQ4. How do root characteristics change with tree DBH?

Conclusions

Conclusions

- Juvenile aspen from seedling origin do produce suckers
 - 4 suckers / tree as an overall average, up to an average of 8 suckers per tree in the low cut treatments
- Cut height affects sucker production
 - Low cuts produce more suckers than control and severed root treatments
- Severing roots has a comparable effect to high cut treatments
- Smaller diameter stands produce more stump sprouts
 - Stump sprout production does not inhibit sucker production

Implications

- Stem density can be increased in planted stands by lowseverity disturbance (root severing) or canopy removal
 - BUT Suckering was highly variable in our study
 - 0 28 suckers per cut tree (2015), average of 4/tree (2016)
- Intra-species root competition likely has an impact on regeneration (Bockstette et al. In Press)
 - A stand with 81 km of roots ha⁻¹ was able to produce 40,000 stems ha⁻¹ compared to 130 km of roots ha⁻¹ producing 26,000 stems ha⁻¹
- More research into rooting behavior is needed
- Suckering also likely driven by storage

Total Storage Dynamics

Results

Storage drives suckering

Thank You

Thank you to Erin Wiley, Fran Leishman, Pak Chow, and the rest of the Landhäusser Research Group for your help in the field and the lab

Bell F.W., D.G. Pitt, A.E. Morneault, S.W. Pickering. 1999. Response of immature trembling aspen to season and height of cut. N J Appl For 16:108–14.

Mulak T, S.M. Landhäusser, V.J. Lieffers. 2006. Effects of timing of cleaning and residual density on regeneration of juvenile aspen stands. For Ecol Manage 232:198–204

Bockstette, S.W., B.D. Pinno, M.F. Dyck, S.M. Landhäusser. In Press. Root competition, not soil compaction, restricts access to soil resources for aspen on a reclaimed mine soil. J Bot

Cutting vs. Trenching

Severed root trees survived!

Root relationships

Root relationships

Site	Site Characteristics		2016 Sucker Characteristics		2016 Stump Sprout Characteristics	
	Density (stems ha ⁻¹)	Basal Area (m ² ha ⁻¹)	Regeneration (stems ha ⁻¹)	Average Height (cm)	Regeneration (stems ha ⁻¹)	Average Height (cm)
.arge ameter	10000	79	40380 <u>+</u> 6264 a	59 <u>+</u> 44 a	3000 ± 1811 a	67 <u>+</u> 43 a
imall imeter	29000	49	26025 <u>+</u> 665 b	48 <u>+</u> 37 b	15225 <u>+</u> 2212 b	64 <u>+</u> 45 a